Clean GamelLlibrary

Mike Wiering

Katholieke Universiteit Nijmegen
Department of Informatics
Faculty of Physics, Mathematics and Computer Science

August 1999

Abstract

This paper describes a game library for Clean, specidly
designed for parallax scrolling platform games. The purpose
is to make game programming easier, by letting the
programmer specify what a game should do, rather than
program how it works. By integrating this library with tools
for designing bitmaps and levels, it is possible to create
complete games in only a fraction of the time it would take
to write such games from scratch.

At the moment, the library is only available for the Windows
platform, but it should not be too difficult to port the low-
level functions to other platforms. This may eventually
provide an easy way to create games that run on severa
platforms.

Acknowledgements

First of all, I would like to thank my supervisors, Rinus Plasmeijer
and Marko van Eekelen for their guidance and for alowing me to
choose games as a serious subject in thefirst place.

| would like to thank Peter Achten for his guidance throughout the
project, for helping me with all the implementation problems and
for his suggestions to correct and improve thisthes's.

Furthermore, | want to thank everyone who helped me improve the
library by sending remarks, suggestions and bug reports.

Finaly, | would like to thank my family and friends for al their
support during this project.

Contents

CHAPTER 1 INTRODUCTION ... ettt ettt 1
CHAPTER 2 TERMINOLOGY ..ottt et tes e b e st e s essesesseseseaseaenessesesenessnns 2
2.1 WHAT ISA PLATFORM GAME?tiuiititeueeateueseeteaestesesesteseseseaessssenesesanesessesessssensasesessssesessssasessesans 2
B = T SRR 3
2.3 LAYERS ...ttt ettt h b e R R R e Rt R et eer s 3
2.4 POSITIONING LAYERScuettiuiteutstetestssesessasestsestesesesseststesestsbesessssesessesesessesessss et essnsesestssesssssessssesens 5
2.5 TILES ottt ettt ettt e e h b s bR R bR R Rt ee et r s 6
2.8 TILE SEQUENCEScuetteeeueseeeeseseeteseseeseneaseseseeseaeseesaessesasesseseneseesanessesessssesessssensssssenssesensesasessssans 6
2.7 DEFINING A LAYER.....cittitetettstitest sttt ssesestssestaestest st bes e s tesestsb s e s se s s ees s e ns b e e s st snen e ens e e en e 6
2.8 SPRITESAND OBJIECTSeuveutteteuertetestssesesestesesessesessesesessesesesses et se s estsbese st s s s ss s et ss s e sesese e nnessnenens 7
2.9 THE MAIN CHARACTERc0cutititeuiitettst sttt sttt eaesesses s b st resbese st bt s b b se st ss b es b e e e e b s e e enes 8

2. L0 BOUNDS ...ttt ettt bkttt e bRkt R e Rt s h et e e n e 8
2,11 TEXT ELEMENTS et tteuteeeueuereeueseeeeueseseseesesseseseseeaeseesesensasenesessenessesasesseseasesensasssensasesensesesensssanessssens 9
CHAPTER 3USING TOOLSTO DESIGN GAMES.......cooiiiiiceeet s 10
3.1 CREATING TILES AND SPRITES......c.eitttetsuestereesessessessssestestesessessensesessessesessessesessesseneesessenseneesessessenes 10
.2 EDITING LEVELS....ttutiititeeeresitett sttt se st se bttt en st s st st s et e st s bt a bt b st ab b et s s e eneseaesbene s 11
3.3 GAME CREATION TOOLSctttuteutereeseeeueseressesessesesessesesessassseesansssesessssesensasenssessensssssensssssenensssenees 11
BT T =T 4 =1V =1 R 11
B2 KIIK & PlAYcviiiieiiresteee ettt 12

3.4 GAME LIBRARIES......cuitiitetitesettstst et seestatseese st tes e st et b st b bt st b b s e b et s e s et neebe e eeeseasebenenesnenenee 12
G 1 = v 0 SRS RRR 13
B0 N 1= o o TSP 13
BB FASIGIAPN. ... ettt e e e aeeseentesaeeneeneenteerens 13
CHAPTER 4 CREATING A GAME LIBRARY FOR CLEANccociiiiirereeeeree e 14
2.1 DESIGN DECISIONSuteeueueeeueueeseneneseeseseesenesseseaessesessssesasssenssesensssesensesessssasessssssesensasesessasesessesens 14
O O o S 14
A.1.2 LiDrary reQUITEIMENES.eoieeeeieeeeeseseseeeeeseeseeseeeeeesee e e eseessesseeseeneesaessesneensesseseeesessesnessens 15

4.2 IMPLEMENTATION DECISIONS......ceututueutreetenestesenessesesesseneasesenssesensssssesssssesessesensssesensesessssesesessesens 16
4.2.1 Platform choice and POrtability.........ccccoiriiiiieire e 16
A.2.2 LiDrary CROICEciuiiieieceie ettt sttt b bbb s et st e 16
4.2.3 Programming laNQUAGE.ceeeuerurreseeeeeeeeseeseseeeeeesee e seeseensesessseensensesessesnseseensesessees 16
e o 0] 0°= ot PSR 16
CHAPTER 5 SPECIFYING A GAME ...ttt s 18
5.1 DEFINING A GAME ... viiteteiiseettet sttt ss sttt se s best st b st bbb b e bt s b et b et ne b eae b e st r b enns 18
5.2 DEFINING LEVELS......cveuttetetirteteit sttt st ss st ssests e ss st ne b st bbb b e bbb nn et nne e ne s 19
5.3 DEFINITION OF A BOUND MAP......ccttitiateeriesitsuessersessesiessesessesseeneestessessessesasensessessessesseessesaesseensesns 20
5.4 DEFINING LAYERSocuiiteteuiitetiststeststssesestssese st ssessaestest st bese s bb et b b e b s b et ar et ne b et b b e senn b e e 21
5.5 GAMEBITMAPSoouiiteiiieteiiseettit sttt e s s st se st et s st bes e b b et b b e e b et s bt s b et e b et b bt nenn b e e 22
5.6 DEFINING OBUJECTS ...c.cettteeriesestressestsseseseseesasessesesessesssassessssesessssesessssessssssesssessessssssesessssessnsssensnes 23
5.6.1 The complete object defiNitioN.........ccoeiiriiniee e 23

LI G IS = (=== SO 24

Lo S o] 1 (=< RV SOTRRPRPRRN 24
5.6.4 ThE ObJECE FECONT......eitiiiieiiiie ettt bbbttt b st b e et senbe b 24
5.6.5 ODJECE BVENLScviieiieiesie ettt bbbttt b e bbb et ebe b s s be e re b 30

LIS 7. 1S 0= OSSR 33
CHAPTER 6 GAME FUNCTIONS.......ciiiiceteeees ettt e eae e ee e eeene s 34
6.1 STARTING THE GAME ENGINEutueitiuiieueuieeeteseeeetesesaeeesesseseseesesessssesessesasesessasessesensssessnsssesensesenees 34
6.2 CREATING OBJECTS ...uteuretiitiirieieitsrissesessese st st saesassear b s sbesresae e sb e s besn b e s b s he e nr e s et nenene s 34
5.3 FOCUSING AN OBJIECTueueeteeeeseaereesesseeeseaeesesessasesessesesessasssessessssssessssesensasensseasenssessesensssenensssenees 35
6.4 BROADCASTING EVENTS.....tttteteeeeesereeaesereesesesseaesessesesessasesessessseesessesesensasenssessessssssensssssenensssenees 35

5.5 PLAYING SOUNDS.....c.utiitiiteitietiteateeteeseeseesesee st e ssessesbesseeseesbessesasessesbesaeessenbebesbe e e enbesbesbeeneeseessenas 36

6.6 CHANGING THE BOUND MAP.....c.uiittiietestesteeseeseestessessesseeneesbessesssessesesaesssensesessesssensessessesnseseessena 37
CHAPTER 7 IMPLEMENTING THE LIBRARY ...oiiiiitiirieesee ettt e 38
7.1 STRUCTURE OF THE LIBRARY ..utititieteereestessessesseseesiessessessesseeseesbessessessesasensessessesseeseessesaesseensenes 38
7.1.1 LevelS Of INFOMMALIONc.veiiiiteiiee sttt sttt et sre e 38
7.1.2 Communication between 1eVElS Of COUE. ..o 39
7.2 INTERNAL REPRESENTATION OF A GAME ...c.vitiiterisetetseesestsessese st ssesesassesssreseessese s ssesssssnesssessenenns 41
A R o < = T SRR 41
T.2.2 LEVEIHANAIE. ...ttt et et ne st e seeseesaeeseensesaeeneeneensensens 41
7.2.3 ODJECIHANAIE. e et b et sttt st e b nne s 42
7.3 LOW-LEVEL FUNCTIONSctttuteuteteteeseeseessessesseenseseessesssessessessteseesbessesseessessssaessesnsensessensessessesnsenns 43
7.3.1 GAME FESUIT COUBS ...ttt ettt ne e s ae st e e eneeseestesnesseeneeneensens 43
7.3.2 SCrEEN FUNCHIONS. ... oottt ettt e et e ae e e te s e sbe e e e naesaeneeneeenean 43
7.3.3 BItMAP FUNCLIONS.ottt st ese e e e seesaeese e e eneeneens 45
JRC T S o 10 o I g Tox o] SRR 46
CHAPTER 8 USING THE TOOLS......oiiieteeieeee et ee e enene s 48
B.LUSING GRED ...ttt sttt ae ettt e aeae e ee e e eae e s e eae e et esens et ese e seese e seenensesenensesenenes 48
LS I O o 10701V =10 | SRR 438
8.1.2 DIraWiNg PIXEIS...c.eeiueeeeeieeieee e ettt ettt e st e te et eteeneesaestesseeneessesneeneensentesneeeeneensensens 49

8. L3 EditiNg the PAlELE.cueveeeeeieiee e bbb nre s 49
8.1.4 Loading and SAVING SPITES......ccuieriiiieieriiieresesie sttt sse e sse sttt be e sesseneenens 49
8.1.5 Creating animation SEQUENCES.........ceerierueruerieeneeeesieseesseeteeseesseseesseeseessessessessesnsessessesssessensens 50

8. LB BIOCKS ...ttt ettt ettt e et e et es e et e et ek e e s R e e s e b eR e e b e e s eb e et ene e eeenenneeas 50
8.1.7 SOIME MO FUNCLIONS......cviiiiieiiccie sttt sb ettt se e nbe b 50
B.LB EXAIMPIE. ...ttt et ettt b ettt bbbt ne b 51
B.2USING EDLEV ...ttt et bbbttt et sttt st 51
S I R O N o 10701V =00 | SRR 52

8. 2.2 DIraWiNG LHES ...uiieeieeieiesie ettt sttt sttt et b e et st b e bt re b 52
8.2.3 COMDINING LISttt et st sa e bt enbe st 52
8.2.4 SNITLING COIONS...cuviuiitiiieieiiee sttt st bbbttt se e sttt b et e s beneeneas 52
8.2.5 COPYING THES. ...ttt et sttt et st se et 53
8.2.6 BOUNAS @Nd MAP COUESoovieeeeieie et e ettt ettt st see e aeeeseete e e e e e senseenean 53
8.2.7 TH @ SEUUENCES......enevieietene ettt ettt sttt st bbbt b e b et se b e st et et se e bt neenenbeneeneas 53
8.2.8 Other FUNCLIONS TN EDLEVc..ciiiiiieesieieceste ettt sttt e 54
8.3 GENERATING CLEAN CODE......ccutititteteereestesuesseesessessesasessessesseeeessessessessesasansessessessesseessessesseenseses 54
8.3 L IMAKEDX......cueiteteeeeteteeesteseees i et ese s i e be s e se s es e eeebe s e e ee et eae b s e aesbeb e e b eb e e ebeneseseneeeeseneeeenean e 54
8.2 IMAPZICL ...ttt sttt e ettt st se et es e eesbe s e e ee e s e e be s e ee b eb e ee b eReee et e e s eRe e eseneneeteneae e 54
CHAPTER 9 SPECIFYING A PLATFORM GAME ..ottt 57
9.1 GETTING STARTED ..utteutiutesteeutestestessesseeseessessesseessessessesasessessesseeneesbessesseeseessssaesseeneeseeseensssaesseensenes 57
LS I B = o YA [o (1 = USSR 57
9.1.2 Clean COMPILES SELUDeeueeeereeeeeieriesteeee et ene et ee e eeete e e e s aestesseeneeseesaesaneneeseeneensens 58
9.2 CREATING LAYERS ... ettttetesereeseseeeesesseaeseaeeseseasesesessesesessassseesassssasessssesensasenesessesensssssensesenensssenees 58
9.2.1 Creating @ backgroUnd [AYESoeceeeeeie ettt see e 58
9.2.2 Creating the foreground [QYEYcooereierieeeee e see e seeneeneens 59
9.3 CREATING SIMPLE OBJECTScuuteeueueaeeueseeensesessesesesseseseesasesssssssssssessssssansssesassssesensasenensesenessssenesen 60
9.3.1 Creating & SEALIC COIMeivieeeeieesiereirecee et te e eeeestesteeseeseeseessesneeneeseensensens 60
9.3.2 Creating @ falliNg COIMN.......cccieeee ettt neeneeseeseenseeens 63
9.3.3 The background ClOUTS............coiriiiniiiiiicee e e e s sne s 63
0.3.4 CrateS WIth ITEITIS ... ettt sttt st b e bt nbe b 65
O.3.5 Creating ENEIMIES......ccueiieeieeeeieterte st ereesee e s teeeeseessesaeeste e neesaessesnsensessesaeensensenseeseeneeseensensens 66
9.3.6 Creating thE DEES.........eceeee e et ne 67
O.3.7 CrEatiNG fTOGS. c.e.veueetirierieieee sttt ettt st bbbttt st et e st bt b et e e nenbeneeneas 68
9.3.8 OtNer ODJECES ...ttt bbbt 68
9.4 CREATING OUR MAIN CHARACTERcttetterttruesterutesesteseese sttt eseeseessessesseenssseessesnsensessesseeneessensesns 69
9.4.1 MaiN CharaCter @CHIONS........ciirieierireieie ittt sttt sttt b e sb e et bentesesbens 69
O.4.2 ODJECE SLALE.....cveveueeeieiesieiiee ettt sttt st bbbt b e st e e et b et e st et e e et st et e e nenbe e eneas 69
Q4.3 INITIAIIZALTION ..ttt b bbbttt e nre s 70

9.4.4 MOVEIMENE CONEIONviiirieiiie ettt sttt et et e et e ere e eaeesabeeab e et e esbe e be s beesaeeebeesareessesnbeensannns 70

L IR SO0 1= [0 o =TSR 72

O.5 FINISHING THE GAME ..veiitveeiteeeetteeeiteeessseeeisseessessssssssssesssssessssssnsessssssssssssssasessnsensssesssssessssesssnnes 73
O.5. 1 AUUING SEALISHICS. .. evereeneiesieieicste sttt sttt sttt st st s a e bbb bt besbeeebenbens 73
O0.5.2 FIOW Of tNE AME ... ettt sttt b e bbb 74
CHAPTER 10 CONCLUSION. ...ttt ettt ettt ettt ettt e st be e esaesaeeessesnbeessesnbeeseeabeesssesnnen 76
10.1 RAPID GAME DEVELOPMENT ...vvteiitieeitteieitreesireesaseesassessssessssssssaseesssssssssssssssessnsssessseesssssssnsesssses 76
J10.2 POSSIBILITIES. ...eciuviiieiiutieteeteeesestsssesasesssesaesssbesssssbesssesssesssessaesssessaesssessassssessssessssssessseessessseens 76
J0.3 PERFORMANCEcccuiiiieeitseteseeeteesetsssteestessttesbessaeesbesssassbessaeesaessbesesesesesesbeasessbeesbessbessressressnreens 76
10.4 OVERALL CONCLUSIONuvtiteiteesteeiteesteesteesaeessessstessesssesssssssessssasessssessessssssssssessssssssessesssesssenns 77
REFERENGCESco oottt ettt ettt ettt et e st ta e st e ettt et e sabe e besabessbaeabaesaseessesabeenseenbeeseesbeereans 79

vi

Chapter 1
| ntroduction

Although two-dimensional platform games are more and more being replaced by 3D games, this genre
isdtill loved by very many people. Creating agood (playable) platform game isusualy avery difficult
task, which involves avariety of skills. Programmers will often have to spend alot of time optimizing
the code, because performanceis crucial; these games have to run fast enough in order to be enjoyable.
Next to the programming, graphics (drawings, bitmaps), sounds and music have to be created aswell.
In larger projects, several people work together (for example: a game programmer, an artist and a
COMpOser).

Many people want to start creating their own games, but soon give up because of the programming
difficulties. For those who don't give up, it usually takes years before they have enough programming
experience to realy get started. They still spend most of the time solving programming problems,
instead of creatively designing their game. A complete platform game, written from scratch in a
language such as C or Pascal can easily have more than 10,000 lines of source code.

Isthere no easier way to create a platform game? Of course there are many game libraries that can be
used to make the programming alot easier. These libraries usually take care of al the low-level
functions, such as displaying bitmaps and playing sounds. Using such libraries will definitely save the
programmer alot of time, but the game itself still has to be programmed.

Another solution is provided by some game creation programs, discussed in Chapter 3. Thesetools
make it possible to create complete games with no programming at al. Instead, the user can create
sprites, objects and complete levels by just clicking with the mouse. Although this sounds wonderful at
first, the possibilities turn out to be limited. Some types of games can be made, but these tools (current
versions, at least) don't seem adequate for serious platform games.

Isthere no way to design games easily and still have the flexibility of area programming language? A
possible solution isto let the programmer write a specification of the game in afunctional language and
have an interpreter for this specification that will run the game. The programmer doesn't have to
specify exactly how the game works; only what it does. A standard game definition provides the
framework for the specification and the programmer can use functions to describe the game.

The purpose of thisresearch isto find out if it is possible to use such a specification in afunctional
language to create entire platform games and whether or not writing such a specification has benefits
above using 'normal’ programming languages.

The strategy isto implement a complete game library for the language Concurrent Clean [1]. First, we
will create a compl ete game definition as an abstract data type and then implement an interpreter that
can run agame of thistype. Finally, we will create afew example games with thislibrary and examine
the results.

Another interesting question is whether or not the library can be used together with the existing Clean
Object 1/O library [2] and of course, how the produced games perform.

Chapter 2
Terminology

There are several types of computer games. The first games were” action arcade games’ , they usually
had a static background image on which afew objects" could move around. Well known examples
include Pac-Man and Asteroids. Soon the backgrounds became larger and games could move (scroll)
the entire screen around over these backgrounds. In alot of these games we look at the (two-
dimensional) crosscut of the situation from the front side, as if we are standing right before it (with the
sky above and the ground below). We will call these games “ platform games’ . Newer games such as
Doom and Quake are three-dimensional and show the situation from the player’ s point of view.

In this chapter we will take alook at the elements in a platform game and discuss some of the termswe
use. Normally, agameis divided into levels (see §2.2), which are the different stages, areasin the
game. These levels have to be completed one by one in order to complete the game. The visual part of
alevel is made of one or more layers (82.3) that can scroll. These layers are built from small blocks,
which we will call tiles (82.5). A level can contain all kinds of moving creatures we will call objects.
On the screen, these objects are represented by their sprites (see 2.8). A specia kind of object isthe
main character (see §2.9), which is controlled by the player. A level aso containsinvisible information
about ‘walls' in the map that control how objects can move through the level, called bounds (82.10). We
will also take alook at the text elementsin agame (see §2.11).

2.1 What is a platform game?

The name “ platform game” comes from the concept of animated objects (sprites) walking and jumping
on platforms. In these games the player controls a main character that can walk around on the screen.
Most games scroll the screen while the main character moves, so that the area (the level) is much larger
than one single screen. The view is always two-dimensional, there is no depth dimension like in 3D
games. However, there are often background layersthat scroll at different speedsto suggest depth
(parallax scrolling). These games are also called ” junp ‘n run games’ and “ side scrollers’, which
might be more descriptive terms for this genre [3]. But since most people speak of “ platform games’
we will use thisterm.

o i

Figure 2-1: Super Mario Bros.

One of the most popular platform games ever is Super Mario Bros. (see Figure 2-1) by Nintendo
(1985). In this game, the main character, the plumber Mario, must defeat al kinds of enemies and
finally rescue the princess from the dragon Bowser. During his quest, Mario can gather coins and other
items to survive. Most platform games have been based on asimilar idea. A certain main character (a

1 We will speak of objects as“real elements” in agame, not as objects in Object Oriented languages.

person or an animal) hasto find his or her way through a number of levels and defeat al kinds of
enemiesin order to fulfill an important mission. Sometimes the player also hasto solve little puzzles to
complete alevel, but most games do not require the player to think at all.

Even though platform games have a certain goal (i.e. to rescue the world), it usualy isn’t achieving that
goal that makes the game fun to play. After beating a game, we stop playing it. The fun part isto
explore the level s and keep wondering what the next one will be like. In the mean time we enjoy the
graphics or the background music. The game should remain challenging all the way, and not become
too difficult. Variety between levelsis very important to make a game challenging.

2.2 Levels

The levels are the different parts (stages) of agame. Usually each level represents adifferent areawith
its own scenery and enemies. The main character starts somewhere and has to find the exit. In almost
every game the player starts left and travelsto theright. The level contains all kinds of dangersthe
player must pass.

In most games the player has a certain amount of lives. After every fatal mistake the player loses alife
and must restart from the beginning of the level. When no lives are | eft, the gameis over. The player
often haslimited time to complete alevel.

Larger games usually have worlds in addition to levels. Each world consists of a number of levels. For
example, agame could have 7 worlds of 5 levels each instead of 35 separate levels. Each world would
have its own characterigtics, such as the types of enemies. Typically, each world will start with easy
levelsin which the player learns new skills and end with aboss-level (a very large enemy that must be
defeated to pass that world).

Information like the number of remaining lives, the time and the player’s score are often shown at the
top or bottom of the screen continuously during the game. In Figure 2-1 for example, we can seewho is
playing (Mario or Luigi), the player’ s score, the number of coins, the current world and level number,
and the remaining time. We will call thiskind of information statistics here.

2.3 Layers

A platform gameis usually built with layers. Figure 2-2 shows alevel of the game Charlie the Duck by
Mike Wiering (1996), which contains four different layers. These separate |ayers are shown in Figure
2-3.

o

&y 2] 500 | “ 0

Figure 2-2: Charlie the Duck

The most distant layer isthe blue sky together with the sun. Then comes a layer of distant trees and
another layer of closer trees. These first three layers al belong to the level’ s background. The forth
layer is on the top and represents the foreground. Thisis where we find al the moving objects.
Actually, the game would & so be playable without the three background layers; their only purposeisto
make the level prettier.

Lo

ayers (back to front)

s ok kiR ke il o

Figure 2-3: The separate |

All these layers (except the first) are partly transparent. By scrolling these layers at different speeds we
can add alittle depth to the game. It’ s like looking out of the window from atrain at the horizon. The
closer each object is, the faster it passes. Objects that are very far away, e.g. the sun do not seem to
move at al. Thisis how we scroll the layers of a platform game. In this example, the most distant layer
(the sky with the sun) doesn’t scroll at al. The next layer of distant trees scrolls very slowly and the
closer layers scroll faster. The foreground layers scroll in such away that the main character will
always be around the center of the screen, so the main character actually controls the scrolling.

If we look more closely at the foreground layer, we see that is built from small blocks (here there are
16 of these blocks horizontally and 13 blocks vertically), named tiles (also called chips[17] or just
blocks). Most of thetiles are used at several places, sometimes mirrored or drawn in adifferent color.
That means that we only have to draw alimited set of tilesto create alayer. Each layer has its own set
of tiles, so thetiles of the different layers do not need to have the same size. For background layers, it's
easier to use larger tiles, sometimes even only one large tile that fills the entire screen.

Figure 2-4 shows how the three background layers are projected on the screen (or the game window).
Through the transparent areas of the front layers we see parts of those behind them. Usually, these
layers are drawn on the screen from back to front, leaving the transparent areas unchanged.

These layers do not have the same size. The most distant layer (the sky with the sun) has the size of the
screen. No matter how we move through the level, the sky will never change. The closer layers are
larger, because they can scroll. Asthe player wal ks through the level to the right, the projection offset
of these background layerswill also (slowly) move to the right, making these layers seem to move to
the left. The foreground layer is not shown here, but it is much wider than all these background layers.
All the layers have the same height here, because this game does not scroll up and down.

When we speak of the size of alevel, we mean the size of the areain which the objects move (defined
by the size of the bound map, see §2.10). Thisis usually the same as the size of the foreground layer.

Figure 2-4: Projecting layers on the screen

2.4 Positioning layers

First of al we must define the orientation of a game. We will consider the left-top corner of an entire
level to be position (x = 0, y = 0). The x-coordinate increments as we move to theright, they
coordinate increments as we move down. Because levels usually are larger than one screen, we will
define the left-top corner of the screen as our viewpoint (xview, yview).

We will use this same orientation, with the upper-left corner as (x = 0, y = 0), for al our bitmaps (tiles,
sprites) and for theinternal representation of layers (layer map) and the boundsin alevel (bound map).

We can define how far the player may move from the center of the screen before the viewpoint
changes. This viewpoint is actually the player’s position in the bound map, as described later (see
§2.10). We can make afunction for each layer that cal culates the position of that layer according to this
viewpoint. In most cases such a function would be something like:

(X, y) = (xview / C, yview / C)

In thisfunction, Cisa constant value associated with the distance of the layer. A layer that isvery far
away would have alarge value for C; the foreground layer(s) would have the value 1.

In some cases we might also want to use time (represented as an increasing integer value T) in such a
function. For example, to make a layer with clouds that moves slowly to the left al the time, we could
use the following function:

xy)=(T/C,0)

Now C controls the speed in which the layer scrolls to the right. As T increments, the x-position of the
layer also increases so that the layer is drawn starting at higher x-position each time. Thiswill make the
layer seem to move to the | eft.

Although layers have a certain (limited) size, they are used as repeating patternsin alevel, so the size
of alayer does not influence the size of the level. In fact, we can make a complete background with just
avery small layer (which can even be much smaller than the screen). For example, Figure 2-5 shows a
small layer (left) and its pattern (right). A layer's projection offset is always cal culated modulo its size
(both horizontally and vertically).

s st sace

Figure 2-5: A small layer and its pattern

However, we will usually define larger layers, because such repeating layers soon become boring.

25Tiles

A layer can be seen as atwo-dimensional array of tiles. These tiles are small bitmaps of the same size.
These small bitmaps are usually created separately, but must fit together in such away that the layer
doesn’t look too blocky. Another techniqueisto create larger bitmaps and then split these into smaller
tiles.

Figure 2-6: Example of atile

Figure 2-6 shows an example of atile. Thisisthe same mushroom we saw in the front layer of Figure
2-2. Thesize of thistile is 20 by 14 pixels. The blank (whit€) pixels here are transparent. Because there
isactualy no such thing as a transparent color, we fill the transparent areas with a certain color (here
white) and then interpret this color as the transparent color. Usually, one transparent color is defined
for a complete layer and not for each tile. Thisisto make drawing layers|ess complicated.

When working with 256-color (8 bit) modes, al tilesin al the layers must have the same palette,
otherwise the layers cannot be displayed together. In high-color (16 bit) or true-color (24 or 32 bit)
modes no palettes are required and every tile may contain any color, defined by red, green and blue
values (RGB). Because a transparent color is needed, there will aways be one RGB color that cannot
be used in the entire layer. It is up to the programmer to choose a transparent color that is not needed
anywhere in the layer. Thisis no problem in 8-bit modes, because we use pal ette indexes instead of
RGB values. For example, if we choose palette index #0, defined as RGB = {0,0,0} (completely black),
as our transparent color, we can still use black in our layer by defining another palette index as RGB =
{0,0,0} aswell.

2.6 Tile sequences

To make our layers more interesting, we might want to add some movement to our layers. For
example, water usually has little waves that move and we can |et grass move back and forth alittle to
suggest wind. Of course we could make such things out of real sprites (see 82.8), but these simple
movements really belong to the layer and do not affect the rest of the game. Because such movements
are very common in platform games, we will define special changing tiles, tile sequences.

Figure 2-7 shows two tiles with which we can create a sequence. These two tiles ook very similar at
first, but if we display both tilesin turn for half a second or so, the cloud will seem to move alittle. A
sequenceis defined by alist of tiles and the time to display each tile. After a sequence ends, it starts
over from the beginning. So every time a layer is displayed, some tiles may change.

Figure 2-7: A tile sequence

2.7 Defining alayer

Theintroduction of tile sequences has made layers alittle more complicated. Instead of the two-
dimensional array of tiles we started with, we will now have to define a new way to store layers.

Because all thetilesin alayer have the same size, why not combine them to one large bitmap?
Handling one bitmap is alot easier than having separate bitmaps for every tile. This way, we get one
large bitmap that contains every singletile that occurs anywherein the layer. We will cal this
collection of tiles a game bitmap. Thistechnique makes it possible to work with all graphics of alayer
together. For example, if we want to adjust the colorsin one of our layers, e.g. add more contrast or
make the entire layer brighter, we can now easily use a drawing program and adjust this large game
bitmap.

An example of agame bitmap is shown in Figure 2-8. This game bitmap contains 192 different tiles, al
used in one large level. The game bitmap has one transparent color, black in this case.

Before we can define alayer, we will first have to be able to identify the separate tiles stored in our
game bitmap. To do this, we will smply number these tiles from left to right, starting at 1 (in this
example: 1..16, 17..32, ..., 177..192).

Figure 2-8: A game bitmap

Tilesthat are used in tile sequences are a so stored in such a game bitmap. This means that our
definition for tile sequencesisnow alist of tile numbers together with the time each tile must be
displayed. Because each layer has only alimited number of tile sequences, we will aso number these.

Now it iseasy to define our layers (still using atwo-dimensional array of integers):

A transparent layer may contain empty spaces, places where thereis no tile. We will indicate these
empty spaces with the value 0. The numbers 1..n represent the tile with the same number (wherenis
the number of tilesin the game bitmap). Negative values -1..-m represent atile sequence number
(where misthe number of tile sequneces). These tile sequences are defined by alist of tuples
containing atile number (1..n) and the number of frames to wait before the next frame (0 or more).

Later (in Chapter 5), we will expand this definition of alayer so we can also define horizontal and
vertica mirroring.

2.8 Sprites and objects

Another important el ement of a platform game are the sprites. Sprites are animations that are not part

of alayer, and can be drawn anywhere in alevel. They can have any size or shape. Like tile sequences,
sprites also have sequences of bitmaps which we will call animation sequences. A difference with tile
sequencesis that animation sequences do not always loop. An animation sequence could represent an
explosion. Thiswould be displayed only once. However, most animation sequences do loop. To make a
character walk for example, we would define one sequence of asingle step and repeat this sequence.

An example of a (looping) animation sequence is shown in Figure 2-9. By displaying all these
animationsin turn, the coin will seem to spin. The coin itself can also be moving, in that case each next
sprite will be drawn at a different position.

(CLCECE I 1

Figure 2-9: An animation seguence

A spriteisthe graphical representation of an object. We will use the term object for anything we define
insde alevel that is not part of alayer or part of the bound map. All creaturesthat move around in a
level are objects, so isthe main character. Objects don't have to have sprites; they can beinvisible. All
objects have certain properties (such as their position and their size) and events (such as a collision
with another object). Objects can also have changeable statesin which their properties and their
behavior differ.

2.9 The main character

Most games have one main character, which isthe object that the player moves and that is always near
the center of the screen. However, there are also games that have two main charactersthat can be
played by two separate players at the same time. For now we will only consider one main character.

A main character can usually perform severd actions, like walk, run, jump, shoot and swim. Most
games add alot of specia moves to make the game more interesting.

In most cases, the main character isthe only object that responds to player input, but again there are
exceptions. For example, the player might want to shoot an exploding missile and control the time
when the object explodes.

2.10 Bounds

Now we have layers, an interesting problem remains, how do we define where the objects can stand?
There are several different methods to do this. In early platform games (like Super Mario Bros., see
Figure 2-1), the whole level was clearly divided into blocks, that formed only one layer. These blocks
are either solid (like the bricks and pipes) or clear (the sky, the clouds and the mountains).

Another approach is to create a separate map of the boundsin alevel. This map matches the foreground
layer(s). Figure 2-10 shows a picture of alevel and its bounds. In the right picture, black lines represent
the bounds. The horizontal lines here are platforms on which an object can stand. The vertical line
indicates awall the player cannot pass. This bound map is usually defined together with the foreground
layer(s) and will therefore have the same block size asthe tiles used in these layers. But that is not
necessarily so. We could just as well make a game without any layersat al, only abound map and | et
spriteswalk on invisible platformsin front of a black screen. All level information needed by objectsis
provided in the bound map.

80 r

‘:w .‘.‘.: ha s .‘.‘.:.
Figure 2-10: Boundsin alevel

Just like alayer, the bound map can aso be seen as atwo-dimensional array of level bounds. Per unit
there are four bounds: the upper, lower, left and right bound.

These bounds might change during the game. For example, when the player activates a switch,
somewhere else in the level a door opens and the bounds change so that the player can pass through.

In addition to these bounds, the bound map can a so contain map codes. These are integer numbers that
can be used to initialize objects or to mark specia areasin the map. Thisway we can position objects
much easier than by entering coordinates in our source code. In the example, we see the number 80,
which we can useto initialize the main character. As soon as the main character has been initialized,
the map codeis removed.

A more advanced way to specify bounds would be to only store alist of vectors. That would make it
much easier to create diagonal bounds as well. But here we will just use a bound map with map codes,
because objects should be able to make changes to the bounds. Changing a value in atwo-dimensional
array is usually much easier than constructing a new list of vectors.

The bound map always scrolls with the main character. The position of the bound map is actualy the
viewpoint of the level, from which the position of each layer is calcul ated (see §2.4).

2.11 Text elements

As discussed earlier, most games always have some information on the screen (statistics). But thereis
more text in agame. There can be amenu at the beginning of the game or perhaps a story to read.
Usually the game starts with atitle screen. Figure 2-11 shows the title screen and the main menu of the
game Mickey' s Magical Quest, by Capcom (1992).

Although there are games that run in a small window and use standard message boxes to display text or
OS-menus to control the game, most games run full-screen and have their own menu system. These
menus should be simple. A player doesn’t want the game to look like a boring application program.

lic]hagical guesi

T S MICKEY /M OUSE

L S TR = i B

ST EAME >

Figure 2-11: Mickey's Magical Quest

Asshown in Figure 2-11, the text on the title screen isn’t just written in a certain font and size, but is
drawn as a picture, with several colors and shadow. For some games, complete new fonts are
developed. Because platform games have little text, all text is sometimes stored as bitmaps. During the
game, only the numbers (statistics) are printed as text.

Chapter 3
Using toolsto design games

The times when programmers coded their blocky graphics directly into the game' s code using
hexadecimal values have passed. Everyone usestools to create their graphics these days. Actually, any
bitmap editor or drawing program can be used, but specialized sprite editors have features that make
the job alot easier.

Designing the levels of a game can also be alot of work. Therefore, programmers will often make
simple level editors for games they are writing. Instead of programming alevel, they can design it.

In this chapter we will first discuss some of the tools used to create games. We will also take alook at a
few game creation tools in which compl ete games can be designed, without programming. Finally we
will look at some game libraries that can be used together with programming languages.

3.1 Creating tiles and sprites

Using a sprite editor to draw tiles and sprites has several advantages compared with ordinary drawing
programs, here are some:

* viewing tile patterns
Because tiles are often part of alarger pattern, we will often want to see how this pattern looks
while drawing thetile. Figure 3-1 shows an example of asingle tilethat is used as a pattern.
Without the pattern it’s hard to see whether the singletileis visually correct. Most sprite editors
provide this functionality.

Figure 3-1: A tile and its pattern

e support for animation sequences
Using anormal drawing program, it’s very difficult to create a series of bitmapsthat result in a
smooth animation sequence. Each bitmap (frame) has to be amost the same as the previous, but
dlightly different to suggest movement. A good sprite editor will provide the opportunity to easily
go through the sequence while editing it. Some sprite editors can even animate the sequence while
the artist is drawing, so that real movement is actually recorded in the animation sequence. For
example, by drawing a straight line from left to right will result in an animation sequence of a dot
moving from left to right in the same speed aswe drew it.

» transparent color support
Because most sprites are not exactly rectangular, we use the transparent color to mark areas in the
bitmap that don’t belong to the sprite. If we choose pink as our transparent color in a normal
drawing program and then smoothen our sprite, we will see that the edges have become pink. And
if we make the whole sprite lighter, the transparent color is changed aswell. A sprite editor that
supports transparent colors will recognize pink as the transparent color here, and not as the color
pink.

» changing and editing palettes
When we make games for 8-bit (256-col or) modes, we have to choose a pal ette of 256 colors for

10

an entirelevel. By changing the RGB value of a pa ette entry during the game, this color will
change on the entire screen. So we have to make one palette that has all the colors we will need for
anything we draw. We will often want to reserve afew palette entries for specid effectslike fading
and for the color of text. Some sprite editors alow the user to select parts of the palette that may be
used in a certain sprite. There are al so often functions to easily edit the palette (for example create
arow of intermediate colors), to reduce the number of colors used in a sprite and match a sprite
with anew palette.

3.2 Editing levels

Level editors are much less common than sprite editors and are usually made for a specific game.
Using such alevel editor we should be able to create and edit the layers and the bound map of alevel.
While editing, we should aso be able to create and edit our tiles. The level editor should then create
game bitmaps for the layers with only those tiles that have been used (see §82.7). The layers themselves
and the bound map must be stored in a readable format so the programmer can use them.

3.3 Game creation tools

Now we' ve seen that we can use tool s to create sprites and even to create our levels, could we go even
further and have atool that creates an entire game for us, without any programming?

Aswe have seen in Chapter 2, most platform games have quite alot in common. Since we can already
create our bitmaps and level's, we would only need atool that finishes the game from here.

Still alot of work has to be done before we have a game, like defining the behavior of all the objects,
including that of the main character; defining how objects interact with each other (what happens when
two objects collide?) and defining the flow of the entire game. Finally we will also want to add sound,
menus, text screens, etc.

There have been several attempts to make the ultimate game creation tool [5]. We will now ook at two
of these tools, Game Maker [6] and Klik & Play [7]. A few more of these tools are Click & Create and
The Games Factory [8], these look alot like Klik & Play and will not be discussed here.

3.3.1 Game Maker

One of the firsts was Game Maker, by Recreationa Software Designs, with which scrolling 256-color
games could be written for DOS. This program lets the user create and edit palettes, images, sounds,
blocks (tiles, sprites), maps, monsters and characters. It has an integrator to combine these elementsto
acomplete game. In general, Game Maker is easy to use. Figure 3-2 shows the block editor. The only
size blocks can haveis 20 by 20 pixels.

Block # 31

Figure 3-2: Game Maker

We can define a (main) character by making animation sequences for predefined sequences (Idle, Die,
Injured, Pick up object and Drop object) and for a number of user defined sequences. These sequences
include the movement of the character. Then we enter alist of numbers: the number of lives, inventory
at start, money and hit points at start. While editing monsters, we can define what happens when our
main character touches these monsters: change the score, number of lives or hit points.

11

Although it is possible to create some (standard) platform games using Game Maker, the possibilities
arerather limited. The way movement is defined (within the animation sequences) does not improve
playability. For example, if we make a main character with ajump sequence and a walk sequence, our
character cannot both walk and jump at the same time. Instead, it will stop walking, jump in the air and
land in exactly the same place where it jumped. The solution here is to make another sequence for our
main character in which it jumps and a so moves forward. Some games therefore have three jumping
keys, one to jJump to the left, one to jump straight up and down and the last one to jump to the right.

3.3.2 Klik & Play

Probably the most popular game creation tool isKlik & Play for Windows by Europress Software. This
program is very easy to use and comes with alot of predefined object that can be used. The user starts
with an empty window in which objects can be placed. These objects automatically start moving
according to their default behavior. The user can test the game right away, and whenever an event
occurs (for example two objects collide), the game pauses and the user can define what should happen
in this case. Of course the user can a so create new objects.

For each object the movement can be selected from the following predefined types of movement:
mouse controlled; eight directions; racing car; platform; bouncing ball; path movement or static. All
these types of movement have their own parameters. Platform movement, for example hasthe
following settings: Speed, Acceleration, Deceleration, Gravity and Jump Strength (see Figure 3-3).

" Klik & Play - Level Editor - Game1.gam

rMovement settings——————————————
Speed : | o[y
Acceleration : |t fJ
Deceleration : |——{—
Gravity! |—{ sy
Jump Strength: | [y

Jump Control

" No Jump " Button 1
#Up + LefRight Arrow © Bution 2 g

Set initial dircction |

¥ Moving at start

Try movement |

Goto - - - E
Tools |. . . . N 0K | Cancel | Help | i@
b ’

| Levell |

Figure 3-3: Klik & Play

These predefined types of movement make the program very easy to use, but also cause great
limitations. We cannot really define how our objects move, we can only configure some parameters.

Games written with Klik & Play also cannot scroll, but consist of one window in which the whole
game is played. Therefore, this program is not quite suitable for serious platform game development.

3.4 Gamelibraries

As we have seen, game creation tools do not provide us with a better way to create platform games
than “rea” programming languages. It is likely however that such tools will become increasingly better
in the future, perhaps by combining them with some kind of (simple) programming language.

Probably the best solution isto use areal programming language in combination with agood game
library. Such alibrary should enable usto easily create simple platform games without too much
programming, but aso give us the freedom to add any amount of code to make the game do exactly
what we want it to.

An important decision isthe level of thislibrary. A very low-level library, that provides only the very
basic functions such as drawing a pixel on the screen, will give the programmer alot of freedom, but
will not be very useful. A very advanced library that controls the whole game will often limit the
programmer’ s freedom.

12

Most game libraries provide graphics, sound and control functions. These functions are usually highly
optimized to get the best results from the hardware. Parts of the library will often be rewritten for
specific hardware devices to improve speed even more. The most important graphics functions found in
just about every game library include setting the display mode, drawing (and reading) pixels, drawing
(transparent) bitmaps, scrolling the screen and page flipping®. Higher level game libraries may also
include functionsto draw entire layers and control sprite movement and detect collisions. Sound
functions will typically include playing background music and sound samples. Control functions
provide ways to read user input (keyboard, joystick).

We will now look at some of the game libraries available for the PC.

3.4.1 DirectX

DirectX by Microsoft [12, 13, 14, 15] isthe most used game library for Windows 95/98. Actudly,
there are no serious aternatives for making games for Windows. DirectX isintegrated with the
Operating System and can make use of the specialized video and sound hardware drivers, aready
installed for the OS.

DirectX contains al the low-level functions for graphics. Functions that are only supported on some
hardware are usually emulated on other hardware to provide a universal set of functions. Layers and
sprites are not directly supported by DirectX, but are easy to implement.

There are other game libraries that use DirectX and provide higher level functions than DirectX itself.
An exampleis DelphiX by Hiroyuki Hori, which is mainly a DirectX interface for Delphi, but aso
includes alot of extrafunctionality like drawing layers and handling sprites.

3.4.2 Allegro

Allegro [10] is agame-programming library that comes with djgpp, a 32-bit protected mode
development environment for PC's, distributed under the GNU license [9]. Allegro was set upto be a
multi-platform game library; it can be used in DOS, Windows, Linux and OS/2. It is currently one of
the most used libraries for DOS games.

In addition to the usual graphics, sound and control functions, Allegro a so supports file compression,
timers, fixed point and 3D-math functions and even hasits own graphical user interface (GUI) manager
for applications.

3.4.3 FastGraph

FastGraph [11], by Ted Gruber Software Inc. is aso an interesting game library because it is one of the
few that aso includes a game editor, which is actually a combination of atile/sprite editor and alevel
editor. The library contains functionsto use (display, scroll) such alevel in agame. Obviously this
combination of an editor and alibrary is much easier to use than a programming language a one. Since
the actual gameis still written in C, the programmer has alot of flexibility to make any kind of game.

2 page flipping is atechnique used in most games to avoid flickering. First, all graphics are drawn on
an off-screen buffer (the virtual page), then by swapping (flipping) this virtual page with the visual
page (the screen memory) the new graphics al come together as anew frame. Theflippingis
synchronized with the screen refresh.

13

Chapter 4
Creating agamelibrary for
Clean

This chapter describes the important choices that have to be made before we can create agame library
for Clean. These decisions are divided into design decisions and i mplementation decisions.

4.1 Design decisions

Our main goal of writing agame library for Clean isto be able to design platform games easily. For
this reason we want more than a set of low-level graphics functions. We should be able to write a
complete game, just by giving a simple specification of the game, and without having to write al the
standard functions.

The library will primarily be designed to create multi-layer, parallax scrolling platform games, but
should a so be useful for any other type of game (except 3D games).

There are afew homemade tools, GRED and EDLEV, that have turned out to be very useful for
creating platform games over the years. We will design the library to be used together with such tools.
Integrating these tools with the library will make designing tiles, sprites and complete layers easier.

4.1.1 Tools

Aswe have seen in Chapter 3, the best way to create a game is by using a combination of tools and
programming. Toolsthat are very useful aretile/sprite editors and level editors. Later we might need
some conversion utilitiesin order to import the levelsinto our Clean program.

4.1.1.1 Sprite editor

During this project we will the sprite editor GRED (see Figure 4-1). GRED works with a 256 color
palette, of which 0 is always the transparent color. By changing the RGB value of pa ette entry 0, we
can view the sprite against any color background. GRED also supports animation sequences, we can
easily go back and forth between frames of a sequence while editing.

Figure 4-1: Sprite editor GRED

14

4.1.1.2 Level editor

Asour level editor, we will use EDLEV (see Figure 4-2). Current versions of EDLEV can only edit
one layer of alevel a atime, but itis possibleto put tilesin front of other tilesin the same layer.
EDLEV will convert these overlapping tilesto new combined tiles in the game bitmap.

Figure 4-2: EDLEV

White lines display the bounds here. Aswe can see, an object could stand on top of the right pam tree
and not on the left one. At the bottom of the screen we see some of our tiles. For creating and editing
tiles, EDLEV automatically starts GRED.

EDLEV also supports map codes (see 82.10), although these are limited to a single byte per block.
These map codes are displayed as hexadecimal values O1...FF. In the figure we see the map codes 20,
B1 and B4, which represent objects that will be started at those positions during the game.

4.1.2 Library requirements

To be useful for serious (platform) game programming, the library must contain at least the following
functionality:

* Setting the display mode to a given resolution or opening an area on the screen in which the game
can take place. Full screen modes are generally preferred for games above normal game windows,
but both should be possible. Of course the origina screen must be restored when the program
exits.

» Loading, displaying and scrolling complete layers of tiles. These layers can be transparent and can
contain tile sequences.

» Handling acollection of objects. These objects are either initialized by a code on the bound map or
by the user. The behavior of these objectsis entirely defined and programmed by the user. The
library must display the objects, run their animation sequences and generate certain events (such as
collision events and timer events).

* Play background music and sound samples.
* Generate events for user input, with which the user can control objects.

* Automatic scrolling with the main character. The library should be able to scroll the game along
with a selected main character as this character moves. Thisincludes scrolling al the layers
according to their movement function (see §2.4).

» Display text and number (statistics) during a game in a specified style.

The programmer should be able to use al this functionality from a high level. Instead of programming
how a game works, using library functions, the programmer will give a specification of what the game
looks like. The library will interpret this specification to run the game. The specification is based on a

standard definition of a platform game. In this specification, the programmer may use functions, which
will be evaluated at runtime.

To integrate the library with the design tools GRED and EDLEV, there will be a conversion program
that produces Clean code, which can be imported into the game source code.

15

4.2 Implementation decisions

Now that we have defined what our game library should do, we can decide how to implement it.

4.2.1 Platform choice and portability

Because Clean is a multi-platform language, our game library should actually be made available for
any platform. But since such agame library isfor agreat deal based on 1/0 calls, the implementation
differsalot for each platform. Implementation for multiple platforms would probably take too much
time for this project. Therefore we will only implement the library for one platform, but keep in mind
that the library should eventualy run on any platform.

Thisfirst implementation of the library will be done for the Windows platform.

To improve portability, the design of the low-level library functions should be very general. For
example, instead of making a function that can set the display mode to agiven VGA mode number (as
often seen in PC-game libraries) we would prefer afunction that sets the screen mode to agiven
horizontal and vertica resolution (or opens awindow of that size). Such afunction can be implemented
on any platform.

All these low-level functions have to be well documented, so that anyone can create an implementation
of thelibrary for anew platform, without trand ating the functions line by line. This way, the various
implementations can be very well optimized. For example, if we want to port our library to the Mac,
the best way would be to have someone with alot of experience with game programming on the Mac
write these functions from the specification, instead of trandating the Windows version.

4.2.2 Library choice

Now we have decided to implement the new library for the Windows platform, we have to decide how
to implement the low-level functions. Writing all these functions from scratch would be an enormous
task so it's best to use another library from within our new library.

As stated in §3.4.1, the most obvious choice for serious game development in Windows 95/98 is
DirectX. A disadvantage of DirectX isthat it is not available for other platforms than Windows. Using
alibrary such as Allegro would make porting easier. However, current versions of Allegro can only be
used to create stand-al one DOS executables and not be called from Windows programs. So we will use
DirectX.

4.2.3 Programming language

Because we cannot call DirectX functions straight from Clean, there will have to be some kind of
interface. At the moment, the only way to make external callsfrom a Clean program isby using C

cals. Therefore, we must write C functions for the callsto DirectX. Our library functions will generally
do alot more than only call an equivalent DirectX function. This can be done in the C code as well.
The library itself will be a combination of Clean modules and C code. Though thelibrary is actudly
run from the C side, the control of the program will keep going back and forth to the Clean sideto
handle all sorts of events.

We will cdl the “heart” of the library, which is part of the C code, the game engine. The game engine
keeps the game running by updating object movements and generating events. It also handles al the
display of the game.

4.2.4 Performance

Good performance of agameisusually crucia for its popularity. For platform games, the framerateis
important. Most platform games run at 70 or 100 frames per second. If drawing the screen takes too
long, we get only half (or athird, or less) of this number of frames per second. It can be very annoying
for aplayer if the game suddenly starts moving at half speed every time anew sprite appears. For
smooth scrolling games, even loosing only a few frames every second can be annoying.

What would be the performance needed to make this new library useful? For a simple platform game
we can set our minimal performance goal at 100 frames per second in mode 320x240, 256 colors (8-

16

bit) with two layers, background music playing, a main character and a number of moving objects (say
five). When the library is finished, we can test such agame and find out what the minimum PC
configuration is on which thislibrary can be used.

17

Chapter 5
Specifying a game

In Chapter 2, we have discussed the elementsin aplatform game. In this chapter we will set up a
complete Clean specification of a game, containing these el ements. Later we will write afunction that,
given such a specification, will interpret the game.

The complete game definition is specified in StdGameDef.dcl.

5.1 Defining agame

We will start at the highest level with the specification of a complete game. So what is a game?
Probably the best way to describe agameis by a collection (or alist) of levels, because games are
clearly divided into separate levels.

In addition to (normal) levels, games also have small partslike the title screen, perhaps a Game Over
screen, and more. We could go ahead and define all these types of screensin our game definition. For
example we could say that a Game Over screen is a screen with a bitmap and some text, which would
be enough in most cases. But what if a programmer some day wants to have a Game Over screen with
sprites moving around? Its better to define all these kinds of extra screens as levels aswell, even
though they usually will contain much less than ordinary levels.

However, levels alone are not enough. There isinformation that has to be kept throughout the entire
game, like the player’ s number of lives, total score, etc. Thiskind of information usually controlsthe
flow of the game. For example, the number of lives will often determine whether or not the player may
retry alevel. The problem isthat thiskind of information differs very much for each game.

For this reason we will introduce a GameState, atype that can be defined by the user. All information
that belongs to the game, rather than to one level of the game should be kept here. A gameis then
parameterized with this GameState. Because thisinformation will often be changed during the levels
and not only in between, it should aso be available within alevel. Aswe will seelater, this stateis
even passed on to the objectsin alevel, because they will generally change the state.

Some of the GameState information will be statistics that are shown on the screen during a game (like
the player’ s score). These statistics will also differ alot in various games. Therefore we will add a
function to the definition of a game that gives alist of such statistics, which can of course be empty.

There are two more functions that belong to this game definition: quitlevel and nextlevel. The function
quitlevel tellsthe game library when the level can be ended. Thisis often determined by information
from the GameState. After ending one level, we need to know what the next level will be. The function
nextlevel returns alevel number, position in the list of levels (1...n) or O to quit the entire game.

It might look like a good ideato add a main character to the definition of a game. Although most
platform games have one main character throughout the entire game, we might not want this for some
games. Besides, we probably don’'t want our main character in every level, sincelevels now have a
broader meaning.

Our definition of agameis now:

Gane gs

={ levels . [Level (GSt gs)]
, quitlevel :: (GSt gs) = (Bool, GSt gs)
, nextlevel :: (GSt gs) - (Int, GSt gs)

, statistics :: (GSt gs) > ([Statistic], GSt gs)
}
To use the type GSt, the programmer must include StdGSt. The GSt type is an abstract data type:

18

*GSt gs

={ gs :: g@s
, tb :: !'*COSTool box
}

Thistype is passed on from one function to the next throughout the library, to make sure the functions
are evaluated in the correct order. In a game specification, the programmer defines functions that
accept a GSt and also return one. These functions themselves do nothing with this GSt, except use it to
call other functions and return it as (part of) their result.

5.2 Defining levels

Aswe have seen in Chapter 2, alevel contains a number of layers that can scroll and one bound map.
The layers are only to make the game visible for the player and do not affect the game itself. Therefore,
alevel could aso have no layers.

The bound map contains information needed to place objectsin alevel. Of course, the definition of all
these objectsis al so needed. So we will aso include alist of objectsin our definition of alevel. All
these objects have an object code, which isthe number found in the bound map to initialize the object.

Would alevel bethe place to introduce a main character? Again, for most games we could do that, but
to make our complete game definition simpler, and to give the programmer more freedom, we will not
define amain character at all! Instead, the programmer can only define objects. By giving an object
certain properties, it will automatically become the main character.

The main difference between a main character and an ordinary object would be that the user controls it
while other objects move by themsel ves. Besides, the main character is always on screen. Why not let
any object be capable of reacting to user input? Thiswill only expand the possibilities for the
programmer. The object that the screen should follow can a so be set during the game. Thisway, we
could make games for two players and let the screen follow both playersin turn.

We can till define a single main character (as an object) and et this object be the only object that
reacts to user input and have the screen follow this object.

Another property of alevel isthe position a which it starts. In most platform games, levels start at the
left and scrall to the right, but any starting position is possible. Therefore we will add an initial position
to our definition of alevel. Thisisthe position in the bound map. The layers will al be positioned
according to their movement function (see §2.4).

A level can also have background music, which is played during thislevel. Usually such musicis
repeated until the level ends.

The definition of alevel isnow:

Level state

= { boundmap :: BoundMap

, initpos .. Point
| ayers .. [Layer]
obj ects i [Object state]
musi ¢ ;. Maybe Misic
soundsanpl es :: [SoundSanpl e]

, leveloptions :: Level Options

}

Aswe see here, the game state is passed on to the objects.

Point is a predefined type, which contains two integers, w and h. Maybe is also a predefined type and is
in this case either Just this music or Nothing.

The order of the layersisimportant, because the layers are drawn in this order. The most distant layer
must be the first onein thelist and the closest layer will be the last.

Music, played in the background, isidentified by afile pathname (musicfile), which is a standard MIDI
file and two flags stating whether the music should restart when it ends (restart) and whether the music
should continue after the level ends (continue):

19

Musi ¢

={ nusicfile :: String
, restart :: Bool
, continue :: Bool
}

Each level can contain alist of sound samples that can be played during that level. These sound
samples are loaded before the level startsto avoid having to wait every time before hearing a sound
sample. Sound samples are identified in the program as follows:

SoundSanpl e

= { soundid :: Soundl D
, soundfile :: String
, soundbuffers :: Int
}

Soundl D

== Int

The soundid can be any number so we can indicate which sound we want to play during the game. The
soundfileis either the name of a standard WAV file or the resource identifier of the sample. Because
Clean does not support resources in the executable (yet), we have to use separate files for the sound
samples.

The soundbuffers field defines how often the same sound sample can be played at once. If thisvalueis
1, the sample can only be played if it is not aready being played.

The Level Options type contains some settings that apply to alevel, especialy meant to be used for
testing in an early phase.

Level Opti ons
= { fillbackground :: Mybe Col our

escquit :: Bool
, debugscrol | ;1 Bool
, fadein :: Bool
, fadeout :: Bool

}

By using the fillbackground color, the complete background may be set to any RGB color. Normally,
no background color is needed, because the layers will fill the screen. However, all the layers can be
transparent or there might not be any layers at all. The backgroundcolor has type Colour, already
defined in the Clean Object /O library. This can be either anormal color name or an RGB value.

While testing a game, it is often easy to be able to exit very right away. By setting escquit to True,
hitting the Escape button will always quit the level.

Another useful option for testing is debugscroll. This makes the arrow keys automatically scroll the
level, so the programmer will not have to define a compl ete object to move in the level only to seeif
the level is okay.

The fadein and fadeout options specify whether or not fading is used when the level appears and
disappears. Without fading, the screen will suddenly change from one level to the next. If we do use
fading, the screen will first slowly turn black and the next level will then appear smoothly.

5.3 Definition of a bound map

A bound map containsthe objectsin alevel and the bounds (see §2.10). Because we will usually use a
level editor to design our levels, the bound map will normally be generated by the level editor. But
sometimes we might have avery simple level, like a black screen, for which we would like to specify
the bound map by hand.

The bound map is actualy atwo dimensiona array of integer values, that we will represent as alist of
arrays of the type Int. The arrays represent the horizontal lines (indexed from left to right). The number
of these arraysin thelist setsthe vertical size of the bound map.

20

The game engine interprets the bound map’ s integer values as follows:

Bit 0 — Top of the block is solid

Bit 1 — Left side of the block is solid
Bit 2 — Bottom of the block is solid
Bit 3 — Right side of the block is solid

Bit 4...7 — Reserved
Bit 8...31 — Map code

Though the level editor we will use, EDLEV, only supports 8-bit map codes, the programmer can aso
let objects change the bound map during the game and use any 24-bit integer value.

The information in the bound map is meant to be generated by the level editor and to be read by the
game engine and thereforeis not very readable. However, the programmer can use functions to get the
information from bound map valuesinstead of looking at these bits.

The size of the blocks in the bound map determines the size of the entire level (the size of the layersis
not relevant, asthey are repeated). The size of alevel in pixesisthe size of the bound map multiplied
with the block size. Usually, the block size of the bound map will be equal to thetile size of the front

layer.

Whenever the screen scrolls, new objects may have to be initiaized because they are close enough to
the visual screen to become active. Another property of the bound map is the area around the visua
screen in which the game engine should look for objects that have to be initialized. This distanceis
defined by startobjx and startobjy. In some games this distance could be only one block, which makes
objects appear at exactly the same place every time as we go through alevel. We can aso set thisvalue
to avery large number and al the objects become active as soon as the game starts. Objects a so have
their own forget property which indicates how far they can move from the screen before becoming
inactive. Thisisdiscussed |ater.

We might want to use map codes for more than just initializing objects. For example, we could indicate
water with a map code, so every time an object sees this code it will know it is under water. We would
not want the game engine to keep trying to initialize new objects because of this map code used for
water. Therefore we will introduce a minimum value objstart, that is considered to be an object. All
codes below this value are ignored when the game engine looks for new objects. However, events are
generated when an object touches such amap code.

This concludes our definition of a bound map:

BoundMap
={ map o [{#Int}]
, blocksize :: Size
objstart :: Int
startobjx :: Int
, startobjy :: Int
}

The type Sizeis a predefined type here, containing two integersw and h.

5.4 Defining layers

Just like abound map, alayer usually contains e ements that are generated by the level editor. The only
part of alayer that the programmer will always have to define is the movement function (see §2.4).

Aswe ve seen before, alayer is made of tiles from one game bitmap. Thesetiles are indexed and atwo
dimensional array of these index numberswill define alayer. Asdiscussed in §2.7, we can use negative
numbers to indicate atile sequence. We will use this coding system to define alayer.

We can aso expand the definition to be able to mirror some tiles (or even sequences) in our layer map
horizontally or vertically. We can do this by adding once or twice the number of tilesin the entire game
bitmap to the value, or in case of a sequence, subtracting once or twice the total number of sequences.
The coding of alayer map value x follows:

21

Value of x Meaning

0 Empty tile, layer istransparent at this position
l1..n Tile number x (n isthe number of tiles in the game bitmap)
n+1..2n Tile number x - n, mirrored horizontally

2n+1...3n Tile number x - 2n, mirrored vertically

3n+1...4n Tile number x - 3n, mirrored both horizontally and vertically
-1...-m Sequence number -x (m isthe total number of sequences)
-m-1...-2m Sequence number -x - m, mirrored horizontally

-2m-1...-3m Sequence number -x - 2m, mirrored vertically

-3m-1...-4m Sequence number -x - 3m, mirrored both horizontally and vertically

Again, thistype of coding is done by the level editor and not by the programmer. However, for very
simple levels (like a screen with only one bitmap on it), this system is easy to use.

The definition of alayer isnow:

Layer
={ bmp ;. GaneBit map
layermap :: LayerMap

, sequences :: [TileSequence]
, nmovenment :: Movenent
}

Layer Map

== [{#Int}]

Aswe can see here, we use alist of arrays for the layer map, just like we did for the bound map.

The tile sequences are al so generated by the level editor and have the following type.

Ti | eSequence
= (Int, Sequence)

Sequence
=[(Int, Int)]

The first integer value from the TileSequence tuple is the sequence’ s (negative) number, which
corresponds with the number found in the layer map. The sequenceis defined as alist of tuples of two
integers, the first isthe tile number and the second is the number of framesto display thistile.

The movement function is defined as follows:

Movenent
;== Point GaneTi ne > Point

Thefirst Point is the position of the bound map and the GameTime is the number of frames that have
passed since the level started. Thisfunction is called every frame, before the game engine draws the
layers, and should return apoint at which the layer isto be positioned.

5.5 Game bitmaps

We have seen that a game bitmap is a collection of smaller bitmaps, called tiles. These tiles al have the
same size (the unitsize). Some bitmaps are transparent and have a transparent color, pixels of this color
are always skipped when the bitmap is drawn.

There are different kinds of bitmaps, which makes specifying the transparent color difficult. An 8-bit
(256 color) bitmap would use a palette index to indicate the transparent color. An RGB bitmap doesn’t
use a color palette and therefore needs an RGB color value as it’ s transparent color. For the rest of the
game, the number of colors of the bitmap is not a al important, so we would rather not includeit in
our game definition. But how can we then specify the transparent color?

22

The solution is not to specify the color, but a coordinate of the bitmap that contains this transparent
color instead. It doesn’t matter anymore if the bitmap has 256 colors or more, and besides, we can
change the RGB value of this color in the bitmap without having to change our game definition. The
position of the transparent point is calculated modul o the size of the bitmap. This makes it easy for the
programmer to indicate edges of the bitmap without knowing the exact sizes. For example, the bottom
right corner of a bitmap can be indicated by (-1, -1) instead of (width-1, height-1).

Here isthe definition of a game bitmap:

GaneBi t map

= { bitmapnane :: String
, unitsize . Size
, dinensions :: (Int, Int)
, transparent :: Maybe Poi nt
}

The bitmap name can be either afile name or aresource identifier. Because Clean currently does not
support resources, al game bitmaps must be stored in separate files.

The tuple dimensions indicates how many smaller bitmaps are used (first horizontal and then vertical).

5.6 Defining objects

The objects are probably the most interesting part of this specification, because the programmer should
be able to define their behavior, but the game engine has to make these objects work.

Because objects can be very different, the information needed to control these objects can not al be
defined here. So the programmer should be able to create any type of object and add all the information
needed to control it. But we till have to be able to control all the objectstogether in our library. The
solution hereisto add an object state.

There isone object, the AutolnitObject, which is always automatically initialized when alevel starts.
This object has code 0, so it can not be initialized from the level map. To use the AutolnitObject, we
can simply define any object in our game and give it 0 as object code.

5.6.1 The complete object definition

We will start by looking at the complete definition of an object. In this definition, state isthe type of
the local data used by the object. The parameter gsis the game state (see §85.1).

oj ect gs
= E state:
{ objecttype :: bjectType
, Sprites : [Sprite]
, init ;. !'SubType !Point ! GaneTine !gs
> *(!*(state, bjectRec), !gs)
done c I*(state, ObjectRec) !gs
> *(!*(oj ect Type, SubType), !gs)
, nove ;. I*(state, bjectRec) !gs
> *(!*(state, ObjectRec), !gs)
, animation :: !*(state, CbjectRec) !gs
2> *(!*(state, bjectRec), !gs)
touchbound :: !*(state, hjectRec) !DirectionSet ! MapCode !gs
> *(!*(state, bjectRec), !gs)
collide ;1 I*(state, njectRec)
I'DirectionSet ! ObjectType ! ObjectRec
> *(!*(state, bjectRec), !gs)
frametimer :: !*(state, ObjectRec) !gs
> *(!*(state, bjectRec), !gs)
, keydown ;. I*(state, bjectRec) !KeyCode !gs
2> *(!*(state, bjectRec), !gs)
, keyup . I*(state, bjectRec) !KeyCode !gs
2> *(!*(state, bjectRec), !gs)
userevent :: !*(state, ObjectRec) !EventType !EventPar ! EventPar

23

2> *(!*(state, bjectRec), !gs)

5.6.2 States

We will define an object's (local) state as an existential quantified type (see 85.6.1). Thiswill alow us
to use adifferent type of state for each object. We can still however create alist of all the objects and
work with the separate objectsin thislist.

This object state is defined by the programmer and can have any type. It will usualy be arecord,
containing severa elementsthat are needed to control the object. However, for simple objects, this
state can & so be empty.

Because our game engine has to run the objects and check collisions, some information will have to be
the same for every object. Every object will have asize, aposition and alot more. The state will be
used to storeinformation that is not standard to every kind of object.

Now, we have three kinds of states: the game state (85.1), the object state (local) and the object record
(85.6.4), which is also used by the game engine.

5.6.3 Sprites
Every object hasalist of sprites. We use the following definition of a sprite:
Sprite
={ bitmap GaneBi t map
sequence :: Sequence
, loop . Bool
}

Sprites work just like tile sequences, but they can end. If theloop property is set to False, the game
engine will generate an animation event when the sequence has ended (see §5.6.5.4).

Each sprite can have its own game bitmap. This means that an object can have sprites of different sizes.
This has no influence on the size of the object itself.

The currentsprite field of the object record (see 8§5.6.4) contains the index number of the spritesthat is

displayed. If this number isO or larger than the number of spritesin the spriteslist, the object will

becomeinvisible.

5.6.4 The object record

The (standard) object information needed by both the game engine and the Clean programmer is stored
in an object record. For dealing with most events, such an object record must be sent from the game
engine to Clean and back. We will first give the complete definition of an object record and then

explain the eements.

oj ect Rec
= { active Bool
, subtype SubType
, Size Size
, pos Poi nt
, of fset Poi nt
, currentsprite I nt
, di spl ayoptions Di spl ayOpti ons
, ownbounds Bounds
, bouncebounds Bounds
, collidebounds Bounds
forgetdi stance Poi nt
framecount er GaneTi e
| ayer Layer Posi tion
accel eration Real XY
speed Real XY
bounce FVXY
maxspeed Real XY
sl owdown FVXY

24

, ski pnove oo Int
, options ;. (ojectOptions
}

5.6.4.1 Active

The boolean value active indicates whether the object should remain active (alive). Whenever thisflag
is set to False, the object will be removed within one frame. Just before an object is removed, it's done
event will occur (see §85.6.5.2).

5.6.4.2 Subtype

All objects have an ObjectType, which is the number in the bound map that initializes the object. It is
possibleto have several objects of the same type, with afew differences that we want to definein the
level map. The SubType can be seen as an extra parameter of an object in the map. This parameter isa
map code that is placed right above the code indicating the ObjectType. The value of the SubType
should be always lower than the objstart value, specified with the bound map (see 85.3), because
otherwise the SubType will be seen as an ObjectType that has to be initiaized itself.

Figure 5-1 shows an example of objects defined in abound map (in the level editor). In this example
the objstart value is 10, so values lower than 10 are not seen as objects. There are three objects here, al
with ObjectType 10, the first (on the left) has SubType 1, the next (in the center) has SubType 0 and
the last object has SubType 2.

SubType is defined as an integer value:

SubType
== Int

5.6.4.3 Size

The size of the object is defined in this value of the type Size, which contains awidth (w) and a height
(h). Thisisthe virtua size of the object and does not say anything about the size of the sprite on the
screen, which is determined by the sprite itself. However, if stretch property is set to True, the sprite
will be stretched to fit into this size (see §5.6.4.7).

5.6.4.4 Pos

The vaue of pos indicates the position of the object in the entirelevel (or actualy in the bound map)
and has the type Point. The x and y coordinates define the number of pixels between the top left corner
of thelevel and the top left corner of the object, so this position does not depend on how the screen
scrolls.

However, it is possible to specify the position from the top left corner of the screen instead, by setting
the static flag in the options. This can be used for objects that should always stay at the same place on
the screen, no matter how the layers scroll.

5.6.4.5 Offset

The offset of an object indicates the relative position of the object’s sprite to its actual position. We
could for example have alittle fire as an object in our game. Touching this fire would hurt our main
character, touching the smoke above the fire would do no harm. Instead of creating two objects, fire
and smoke, we can make one single object that has the size and position of only the fire. The object’s

25

sprite however is much higher and also shows smoke above thefire. The y value of the offset will be
negative in this case, so that the smoke is drawn above the (dangerous) fire.

5.6.4.6 CurrentSprite

The currentsprite value isthe index of the current spritein the spriteslist of the object. If thisvalueisO
or higher than the number of spritesin thelist, no sprite will be displayed.

5.6.4.7 DisplayOptions

There are some advanced options to control the way the object’s sprite is displayed. These are found in
the displayoptionsfield. The DisplayOptions has the following definition:

Di spl ayOpti ons

= { blink ;. Boo
, stretch ;1 Boo
, mrrorleftright :: Boo
, mrrorupdown .1 Boo
, rotation ;. Rotation
}

By setting blink to True, the sprite will only appear every other frame.

The stretch property determines whether the sprites are drawn at their actua size or scaled to exactly fit
in the size of the object.

The mirrorleftright and mirrorupdown flags control the mirroring of the sprite.

A sprite can also be rotated at 90, 180 or 270 degrees. Therefore the Rotation type is defined as
follows:

Rot ati on
= NoRotation | Rotate90 | Rotatel80 | Rotate270

5.6.4.8 Bounds

One of the eventsthat we will be programming for objectsis the collide event, which occurs at a
collision between two objects. Every object will have its own collide function that can be defined for a
collision with any other object. But there are aso some collisions that we are not interested in or that
could never take place.

For example, if we create amain character with abig gun that can shoot several bullets at the same
timein al directions, we will generally be looking for collisions between these bullets and other
objectsin the level. We are not interested in collisions between two separate bullets. We could make a
collide function for bullet that does nothing if the other object is aso abullet, but we could make
everything alot easier (and faster) if thiskind of collision isignored by the game enginein the first
place.

For this reason, al objects have ownbounds, bouncebounds and collidebounds values. These are of type
Bound, which has the following definition:

Bound
== Int

We should actually see thisinteger value as a collection of bits that represent bounds. Using these
bounds, we can divide al our objects into separate groups that have similarities. The ownbounds field
contains the object’s own bounds, bouncebounds contains the types of bounds the object bounces with
(bouncing is discussed later), collidebounds indicates the bounds for which the object’s collide event is
called.

A collide event will only occur for an object if its collidebounds field has one or more of the same bits
set as the other object’s ownbounds field. For example, we can define the following bounds:

BND_MAI N_CHARACTER : == (1 << 0)
BND_BULLET t== (1 << 1)
BND_ENEMY t== (1 << 2)
BND_POWER_UP i== (1 << 3)
BND_WATER c== (1 << 4)

26

For our main character, we would only be interested in collisions with enemies and power-up items:

mai nchar act er. ownbounds
mai nchar acter. col | i debounds

BND_MAI N_CHARACTER
BND_ENEMY + BND_POAER UP + BND_WATER

Bullets, enemies and power-up items can be defined in a similar way:

bul | et . ownbounds = BND_BULLET
bul I et. col I i debounds = BND_ENEMY
eneny. ownbounds BND_ENEMY

eneny. col | i debounds BND_MAI N_CHARACTER + BND BULLET + BND_ENEMY

power upi t em ownbounds = BND_PONER_UP

power upi tem col | i debounds = BND_MAI N_CHARACTER
wat er . ownbounds = BND_WATER

wat er . col | i debounds = 0

Aswe can seein this example, not al collisions between two objects will result in two separate collide
events. Here we have an event for the main character colliding with water, but not for water colliding
with the main character. In most cases however, both objects will check for their collisions and handle
their own changes.

There are two predefined bounds, which work in the same way:

BND_MAP_CODES 1== (1 << 30)
BND_STATI C_BOUNDS : == (1 << 31)

These are bounds defined on the bound map. The first, BND_MAP_CODES indicates blocks in the
bound map that have a map code. These must be codes lower than the objstart value, since higher
valueswill beinterpreted as object types. Figure 5-2 shows an example of the use of such map codes.

———————————————————————————————————————

Figure 5-2: Using map codes to define bounds

In this example, the map code 10 indicates a creature walking on top of a small platform. We don’t
want this object to fall off the edge, so we use code 1 to indicate a bound for this object. During the
game, map code 10 will disappear at the moment this creature isinitialized. If we set collideboundsto
BND_MAP_CODES, the collide event will occur every time the object reaches an edge. We could use
this event to turn the object around. By setting bouncebounds to BND_MAP_CODES, this can be done
automaticaly.

5.6.4.9 ForgetDistance

The property forgetdistance contains the x and y distance that an object can move away from the visible
screen before it becomes inactive. The distanceis measured from the point at which objects are
initialized (see 85.3), defined by (startobjx, startobjy). Thisx and y values are bound map blocks.

5.6.4.10 FrameCounter
Each object has a framecounter which is of type GameTime which is defined as an integer value.

GneTi me
== Int

Thistimeis counted in frames. These frames are the updates on the screen, usually 70 or 100 per
second. At initialization of an object, its framecounter contains the time since the level started. The

27

value isincremented automatically by the game engine, but may be changed by the programmer.
Whenever the timer reaches the value 0, aframetimer event is generated (see §85.6.5.7). This provides a
way to schedule an event at a certain number of framesin the future, by setting thistimer to a negative
value.

5.6.4.11 Layer

The layer property of an object determines the depth of the object in the game. The typeis
LayerPosition:

Layer Posi ti on
= InFront | AtLayer Int

Usually, objectswill be placed in front of the layers, InFront, but we could for example have amoving
cloud in the background that moves somewhere behind our scenery, with the most distant layer. We
would then set this cloud at position AtLayer 1, so that the object is drawn after the first layer, but
before the second.

Theinteger value used with AtLayer is not restricted to the actual number of layersin thelevel. It can
therefore a so be used to place some objects in front of others.

5.6.4.12 SkipMove

We have already seen afew of the eventsthat control our objects, such asthe collide and the
frametimer event. Another of these evensis the move event, which is generated for each object every
frame. Theinitia setup of the library was to control al norma movement with this move event.
Information like the speed, gravity and accel eration of the object could be kept in the object’ s state. For
an object that moves like a bouncing ball, for example, we would have the move function do something
like:

state.speed = state.speed + state.gravity
objrec. pos = objrec. pos + state. speed
state.speed = state.speed + state.accel eration

Whenever this object would touch the ground or awall, we could have an event make the object
bounce by inverting its speed.

Although this does work fine for only afew objects, we see the performance drop fast as we add more
objects to the game. Everything starts to move slower, and slower...

Evidently, the number of events we can handle in our game is not unlimited. If we have 100 objects,
for example, at 100 frames per second, there will be 10,000 of these move events every second. Each
time, the compl ete object record has to be sent from the game engine to Clean and back again every
time. Its not that the cal culations in the move function take such along time (similar testsin pure C
could handle alot more moving objects without losing speed). Here, there are two threads, a C thread
and a Clean thread. The game engine runsin the C thread, the move event runsin the Clean thread.
Every time we generate this event, the C thread suspends itself and the Clean thread continues. After
the Clean thread has done those few cal cul ations, the control goes back to the C thread. In the mean
time, the game engine till hasto draw all the layers and run the game which already takes alot of time
without any of these events.

For this reason we want to limit the number of eventsthat occur during the game. The skipmove
property provides a solution for abjects that move in arather constant way, like most objects do. It
contains the number of frames until the move event is generated again. By setting skipmove to
SK_FOREVER, the move event is never generated and the object moves entirely according to the
parameters that follow in the next sections.

5.6.4.13 Speed
The x and y speed of an object is defined astwo Real values. These form the type Real XY:

Real XY

={ rx :: Real
, ry :: Real
}

28

These speed values, rx and ry, are added to the object’ s position every frame. For example, an object
with speed {rx = 1.0, ry = 0.0} will move to theright, one pixel per frame.

Because objects have to be displayed at actual (Integer) pixel locations, their position does not have the
type Real XY, but Paint. If the speed value is 0.25 for example, the position will only change once
every four frames.

5.6.4.14 Acceleration
The acceleration of an object also has the type Real XY . This parameter controls how fast an object’s
speed increases or decreases. This valueis added to the speed every frame.

For example, if we want to make an apple smoothly fall down from atree, we could set its acceleration
(inthis case gravity) to {rx = 0.0, ry = 0.1} . This would make the vertical speed 0.1 at first, then 0.2,
0.3,04, 0.5, ... Therelative position of the apple would be 0.1, 0.3, 0.6, 1.0, 1.5, ... (which makes the
movement parabolic).

5.6.4.15 MaxSpeed

As the name indicates, maxspeed contains the maximum x and y speed an object may ever have. Thisis
the absolute x speed (left or right) or y speed (up or down). Thismakesit possible to control objects
with alarge acceleration.

5.6.4.16 SlowDown

By using slowdown, we can decel erate an object. There are two ways we can do this: by using a
slowdown factor or a slowdown value.

A slowdown factor is a Real number, which is multiplied with the speed every frame. By setting this
valueto 0.9, for example, the object’s speed will be decrease by one tenth every frame.

A slowdown value is subtracted from the object’ s speed every frame.

Because of these two ways we can slow down objects, slowdown has a specia type FVXY:

FVXY
={ fvx :: FV
, fvy 11 RV
}
FVv
= Factor Real | Value Int

5.6.4.17 Bounce

Though collisions with bounds generate a touchbound event, the bounce field can define standard
bouncing movement and the touchbound event can be turned off, just like the move event.

Just like slowdown, bounce can be used either as a factor or anormal value.

Used as a factor, bounce is multiplied with the speed at every collison. A bouncing ball would
normally use such afactor, for example 0.5, for the y factor. This would make the ball bounce less high
every time and eventualy stop it.

Used as a value, bounce indicates a new (absolute) speed the object should have after it collideswith a
bound on the bound map. This can be used to make objects keep bouncing with a constant speed.

5.6.4.18 Options

The options field contains various flags that can be set for an object. Most of these flags help control
which of the events are enabled or disabled. The type is ObjectOptions, defined as:

oj ect Opti ons

= { ignorel evel bounds ;. Bool
, checkkeyboar d ;. Bool
, al | onkeyboar drepeat :: Bool
, static ;. Bool
, hdirection :: HDirection
, vdirection :: VDirection

29

automrrorleftright :: Bool

, autom rrorupdown ;. Bool
, freeze ;. Bool
}

HDi recti on

= DirLeft | DirRi ght

VDirection
= DirUp | D rDown

When ignorelevelboundsis True, nothing happens when the object moves out of the level. If thisvalue
isfase, al the edges of the level are seen as static bounds.

Because usually only one object in alevel will be responding to the keyboard, objects only receive
keyboard events when their checkkeyboard flag is set. There are two keyboard events, keydown and
keyup. These are discussed later.

The allowkeyboardrepeat flag controls whether keys automatically repeat when they are pressed for
sometime. If set to False, pressing akey will aways generate only one keydown event and one keyup
event, no matter for how long the key is pressed. When thisvalueis True, new keydown events will
come after thekey is pressed for some time.

The static flag makes an object move rel ative to the screen rather than to the level. If the static object
has no movement, it will stay at the same place on the screen as we scroll through alevel.

The hdirection and vdirection fields contain the objects current horizontal and vertical direction. These
can be used for objects that have different sprites for different directions.

When the automirrorleftright and automirrorupdown flags are set, the object’ s sprites are automatically
mirrored when the horizontal or vertical direction change.

Aswe have seen, an object’s framecounter isincremented every frame and generates an event
whenever it reaches zero. By setting the framecounter to a negative value, we can schedule an event. In
some cases we would want the object to do nothing at all (to freeze) until this event occurs. Setting the
freeze flag will therefore disable an object’ s move function whenever its framecounter contains a
negative value.

5.6.5 Object events

Just like a normal application in a multitasking environment is event driven, we can run gamesin the
same way. Some of the events are the same in both cases, like keyboard input, but a game also has
different events like objects that collide. By programming such events we can easily create the
behavior of an object.

We will give objects the following events. Of course, most objects will only need to use afew of these.

5.6.5.1 Init event

The init event occurs whenever the game engine finds an object code on the bound map that is near
enough to the visible screen, or when an object is created by another object.

init :: !'SubType !Point !GanmeTinme !gs > *(!*(state, ObjectRec), !gs)

Aswe can see, theinit function creates a new object state and an object record. The information given
to thisfunction is the object’ s SubType (a map code, less than the bound map’s objstart value, that is
placed above the map code), the location of the new object and the time in frames.

Theinit event is used to initialize the object record and its object state, however, an object can also use
or even change the game state, because of the gs parameter.

5.6.5.2 Done event

The done event occurs when an object moves too far away from the visible screen (depending on its
forget x and y values) or when its active property has been set to False.

done :: !*(state, ObjectRec) !gs > *(!*(ObjectType, SubType), !gs)

30

Here, we see that the done function returns an ObjectType and a SubType to the game engine. These
are placed back into the bound map, at their original position, so that the object will become active
again whenever the screen is close enough to the object. However, this ObjectType can also be set to
zero. In that case the object will not return anymore.

The object’ s state and object record are passed to this function and will then seizeto exist. Therefore,
thereis no point in changing the object’ s properties. But we can use this function to update the game
state or to create new objects.

5.6.5.3 Move event

Whenever the skipmove val ue reaches 0, the move event is generated. This can be used to move the
object. This movement will be in addition to normal movement, defined by the values of speed,
acceleration, etc.

nmove :: !*(state, CbjectRec) !gs => *(!*(state, ObjectRec), !gs)

The move event is meant to ater object’s properties, so it returns the same type it accepts. We can
actualy control anything from the move event, the object state, the object record and also the game
state.

By default, the move event will occur every frame. Only by setting the skipmove value, this event can
be ignored (see §5.6.4.12).

5.6.5.4 Animation event

The animation event occurs when an object has a sprite with an animation sequence that does not |oop,
and this sequence has ended.

animation :: !*(state, bjectRec) !gs > *(!*(state, bjectRec), !gs)

This event could for example be used for an explosion sprite. The explosion animation sequence will
run once and then the object has to be removed. This could be done by setting active to False in the
animation event (see §5.6.3).

5.6.5.5 Collide event

Whenever an object collides with another object (and the object’ s collidebounds match the other
object’ s ownbounds), the collide event is generated.

collide :: I*(state, bjectRec) !DirectionSet ! bjectType ! bjectRec
2> *(!*(state, ObjectRec), !gs)

Just like the move event, collide can change the object state, the object record and the game state.
The DirectionSet indicates the direction(s) of the collision.

Directi onSet

={ top .. Bool
, left ;. Bool
bottom :: Bool
, right :: Bool

}

Thisindicates the other object’s bound that the object touched.

The ObjectType and the compl ete object record of the colliding object are also given to this function,
however, these are not returned by the function, so the collide function will only define the collision for
the object itself and not for the object it collides with.

If an object collides with several other objects at the same time, new events are generated for each
collision. Thisis because handling asingle collision is generally easier for the programmer than
handling alist of collisions.

31

5.6.5.6 TouchBound event

The touchbound event is actualy a specia version of the collide event, for collisions with static
bounds. In order to receive these touchbound events, the object’ s collidebounds must include
BND_STATIC_BOUNDS and/or BND_MAP_CODES.

The game engine generates touchbound events when an object touches abound or a map code in the
bound map.

touchbound :: !*(state, bjectRec) !DirectionSet ! MapCode !gs
> *(!*(state, ojectRec), !gs)

MapCode isthe value found in the bound map. As explained in §85.6.4.8, this code can be used to
define bounds for objects.

MapCode
== Int

The DirectionSet contains the direction in which the object touched the bound. If the object were
moving to the right when it hit awall, the left value will be True, because it hit the wall’ s |eft bound. In
some cases, more than one of these directions can be True at the same time.

5.6.5.7 FrameTimer event
The frametimer event occurs whenever the object’ s framecounter becomes zero.

franetiner :: !*(state, CbjectRec) !gs »> *(!*(state, ObjectRec), !gs)
This event will usually be used to schedule an event a number of frames in advance.

5.6.5.8 KeyDown and KeyUp event

The keydown and keyup event are generated for al objects that have the checkkeyboard flag set, every
time the user presses a key on the keyboard.

keydown :: !*(state, ObjectRec) !KeyCode !gs
2> *(!*(state, ObjectRec), !gs)

keyup ;. I*(state, bjectRec) !KeyCode !gs
> *(!*(state, njectRec), !gs)

The KeyCode is an integer value indicating a game key. These game keys are defined as constants and
start with GK_ (for example GK_ESCAPE, GK_LEFT).

KeyCode
== Int

The allowkeyboardrepeat flag (see §5.6.4.18) controls whether there will be several keydown events if
the key is pressed for along time.

5.6.5.9 User event
The userevent event isakind of broadcast event that objects can generate to send messagesto itself or
other objects.

userevent :: !*(state, (bjectRec) !EventType !EventPar ! EventPar
> *(!*(state, ObjectRec), !gs)

Event Type
== Int

Event Par
== Int

These events are defined entirely by the programmer and can have two parameters. For example, a
main character could send (broadcast) its position to al other objects oncein awhile, so “intelligent”
enemies can follow and attack the main character.

32

5.7 Statistics

Text itemsin our games will be defined as statistics. As we have seen, the type Game contains a
function that returns alist of statistics to the game engine to be displayed.

Here isthe definition of these statistics:

Statistic
= { format String
val ue Maybe | nt
position Poi nt
style Style
col or Col our
shadow Maybe Shadow
, alignment Al i gnnent
}

Thefirst field format contains a C-like format string in which the value is displayed, for example:
“Coins: %d”. Here, %d will be replaced by the actual number of value.

The value of agtatigtic is not required, since a statistics may aso be anormal string with only text. In
that case this value can be set to Nothing.

The screen position at which the statistic should be displayed is specified by the Point position, which
contains two coordinates, X and y, relative to the top left corner of the screen.

The style parameter can be used to specify how the text is written. The font name and size can be
selected as well asbold and italic.

Style
= { fontname :: String
fontsize :: Int
bol d Bool
, italic Bool
}

The color of the text is defined by color, which has type Colour, which can be either anormal color
name or an RGB value. By using the shadow attribute we can easily create a shadow under our text.
The Shadow type is defined as:

Shadow

= { shadowpos Poi nt
, shadowcol or :: Col our
}

Here, shadowpos s the relative position of the shadow to the position of the text. This could be for
example {x =1, y = 0} to make shadow only appear on the right side of the letters. The shadow text is
written with color shadowcolor.

There are also some alignment options, which make positioning the statistics easier.

Al'i gnrent
= { xyfromscreencenter :: (Bool, Bool)
xycent er ed (Bool, Bool)

)
The first tuple, xyfromscreencenter indicates that the position is calcul ated from the center of the

screen. If thisvalueis (True, False), for example, astatistic at position (x =0, y = 0) would be
displayed at the top of the screen, starting exactly in the center.

The second, xycentered indicates that the position is the center of the text that will be written.

By setting both these parametersto (True, True), text with position (x = 0, y = 0) will be displayed
exactly at the center of the screen.

33

Chapter 6
Game functions

Part of the definition of a game, given in the previous chapter, consists of object events. These events
are functions that can change either the object’ s state, its properties, or the game state. There are a'so
some library functions that can be used in the event code. This chapter describes these functions, which
are declared in StdGame.dcl. The first, OpenGame is not used in events, but is needed to start the game
engine. Thisisthe function that interprets a compl ete game specification.

6.1 Starting the game engine

Because the game engine is based upon the Clean Object /O library, the start of a game looks like the
start of any Clean 1/0O program. Thereis only one new 1/0O function, OpenGame, which is called with
the game specification as a parameter. This function interprets the game definition and runs the
complete game. The following exampl e shows the code needed to start the game engine and run a
game specification named gamedef starting with initialgamestate as the game state.

import StdEnv, StdlO
import StdGane, StdGaneDef

Start world
= startlOO0 O [init] [Processd ose cl oseProcess] world
wher e
init ps
(_, ps) = OpenGane initial gamestate ganmedef [] ps
= cl oseProcess ps

Now, we will take alook at the OpenGame function, which has the following type definition:

OpenGane :: gs (Ganme gs) [GaneAttribute gs] !'(PSt .1 .p)
> (ErrorReport, !(Pst .1 .p))

The game state (gs) can have any type, which allows usto create a unique game state for each different
game (see 85.1). Thistype is used as a parameter for the type Game, so (Game gs) is the complete
game definition that can be used together with a game state that has type gs.

There are a so some attributes that can be passed to the OpenGame function in the form of alist.

GaneAttribute gs
= ScreenSi ze Size
| Col orDepth Int

Thefirst, screensize isthe size of the window (or actually the screen) in pixels. The default is{w =
320, h = 240} . Only some sizes can be used, depending on the hardware and the installed drivers.
ColorDepth indicates the number of color bits per pixel. The default is 8 (256 colors), but on most
systems 16, 24 or 32 can al so be used.

6.2 Creating objects

As we have seen before, we can create objects as codes in the bound map. The game engine initiaizes
these objects as we scroll through alevel. But in some situations we would like to create new objects
during the game, without having to define these in the bound map. For example, if our main character
can shoot, we would like to create an unlimited number of bullets as new objects during the game.

To create new objects, we can use the CreateNewGameObject function, which has the following
definition:

Cr eat eNewGanmeCbj ect :: ! Object Type ! SubType !Point ! (GSt .gs)
> (GRESULT, (Gst .gs))

This function creates a new object with type ObjectType and subtype SubType at position Point and
then generate an init event for the object.

Objects created with this function can have any value as ObjectType, unlike objects defined in the level
map, which can only have the codes01 ... FF.

The result of the function (and most other functions) is returned as GRESULT. This function currently
only returns GR_OK.

6.3 Focusing an object

In our game definition there is still no way to determine how the screen should scroll. Usualy, we want
the screen to follow our main character. In some cases however, we might want the screen to stop
scrolling (for example if the main character looses alife and falls of f the screen).

We will alow any object to have the focus, which makes the game engine follow the object. If thereis
no object that has the focus, the level will not scroll.

The following function will set the focus to the object that calsit:

Creat e(oj ect Focus :: ! hj ect Focus ! (GSt .gs)
> (GRESULT, (Gst .gs))

oj ect Focus

= { scrollleft :o Int
, scrollup oo Int
, scrollright oo Int
, scrolldown oo Int
, maxxscrollspeed :: Int
, maxyscrollspeed :: Int
}

The vaues scrollleft, scrollup, scrollright and scrolldown define the minimum space between the
object and the edge of the screen. If the object moves nearer to the edge of the screen, the screen will
scroll further (unlessthe level ends, of course). These values only take effect when the object moves.

The maximum scroll speed is defined by maxxscrollspeed and maxyscroll speed.

6.4 Broadcasting events

In some cases we want our objects to be able to send messages to other objects. This can be done by
using the function CreateUserGameEvent:

Creat eUser GaneEvent :: ! Event Type ! Event Par ! Event Par ! Event Tar get
IGanmeTime ! (GSt .gs) > (GRESULT, (Gst .gs))

Event Tar get

= Sel f

| Al Objects

| BoundType Bounds

Thefirst parameter, EventType is a user-defined number indicating the type of the event. Two
parameters can be supplied. These are the parameters of the userevent function that occurs for the
objects that receive the message.

An object can send messagesto itself, to al the objects or to all objects with a certain bound type.
Having an object send a message to itself may seem strange, but thisis very useful because

35

CreateUserGameEvent also accepts a GameTime parameter that defines when the event will take place.
Thisisthe number of frames the game engine will wait before generating the event.

This provides away to easily schedule all kinds of events for objects. For example, if we want abomb
in our game that destroys all surrounding objects, we can let the bomb create a user event with event
type EV_BOMB and the x and y position as parametersto all objects. We can define each abject’s
reaction to the explosion by programming its userevent event. If we don’t want to define this event for
every object, we can define aclass of objects that respond to such an explosion as a bound type and
have the bomb send the event only to objects that have this bound type.

6.5 Playing sounds

We also have afunction to play sound samples. As we have seen before, alevel containsalist of
available sound samples. We can let objects play sounds by using the function PlaySoundSampl e:

Pl aySoundSanpl e :: !Soundl D ! Vol unme ! Pan ! Frequency ! GaneTi nme
1(GSt .gs) = (GRESULT, (GSt .gs))

Vol une
== Int

Pan
== Int

Frequency
== Int

Each time we play a sample, we can specify its volume, the panning (balance between left and right),
the frequency and how long to wait before the sample starts.

The volume can be defined by any value between MIN_VOLUME and MAX_VOLUME, which are
predefined constants, defined as 0 and 10,000.

The pan value is any value between PAN_LEFT (-10,000) and PAN_RIGHT (10,000). The constant
PAN_CENTER isdefined as 0.

By changing the frequency at which we play a sound sample, we can make the sample sound higher or
lower. The DEFAULT_FREQUENCY constant indicates the frequency at which the sound sample was
recorded. Any other value can be used from approximately 100 to 100,000 Hz.

Although we can dready play MIDI files as background music during alevel, we can aso take a
sample of an instrument and make music by playing the sample at different frequencies. However,
calculating the exact frequency of anote is not very easy.

A note sounds exactly one octave higher when we double the frequency. There are 12 half notesin an

octave, so each half note distance factor ish = /2 = 1.05946. If we take anormal A at 440 Hz, we can
calcul ate the frequency of a B by multiplying 440 with h* which makes 466 Hz, and the C by
multiplying 440 with h® which makes 494 Hz. Thisisthe Middle C (the note exactly between thetreble
clef and the bass clef in piano music scores).

Because thisis rather complicated, we will define a modul e notes.dcl, which can supply these
frequencies. This module contai ns a function note:

note :: Int > Frequency

The result is afrequency that can be used with PlaySoundSample. The integer parameter isthe half
note distance to the Middle C.

By combining several PlaySoundSample calls, we can create little tunes that can be played during our
game. The following example shows alist of calls that together play the beginning of the well known
Dutch song “ Sinterklaas kapoentje...”

Pl aySi nt Song gs
(_, gs) Pl aySoundSanpl e piano vol pan 7 0gs /* G*/
(_, gs) Pl aySoundSanpl e piano vol pan 7 20 gs /* G */

36

gs) Pl aySoundSanpl e piano vol pan 9 30 gs /* A */

(_ =

(_, gs) = PlaySoundSanple piano vol pan 9 50 gs /* A */
(_, gs) = PlaySoundSanple piano vol pan 7 60 gs /* G*/
(_, gs) = PlaySoundSanple piano vol pan 4 90 gs /* E */
= gs

Of course we can also just record this song asa WAV file and use the sample instead. But in some
cases, programming alittle song like this is more convenient.

6.6 Changing the bound map

Using the functions GetBoundM ap and SetBoundM ap, objects can edit valuesin the bound map. This
can be used to make changes to alevel during the game. Both the map codes and the directions of the
bounds can be changed.

Get BoundMap :: !'Point !'(GSt .gs) -
('GRESULT, (!'Int, !'DirectionSet), (GSt .gs))

Set BoundMap :: !'Point (!Int, !'DirectionSet) !(GSt .gs) =
(! GRESULT, (GSt .gs))

The Point parameter indicates the location in the bound map. The tuple (Int, DirectionSet) contains the
datathat will be stored in or read from the bound map. The integer valueis the map code and the

direction set is contains True or False val ues for whether the upper, l€eft, lower and right bounds of the
block are set. Reading from a position outside of the map will result in map code -1 and all bounds set.

37

Chapter 7
|mplementing thelibrary

In this chapter we will ook at the implementation of the game library. We will first look at the global
architecture of thelibrary, how the Clean code interacts with the part of the game engine writtenin C.
Then we will discuss the internal representation of the game data type. Finally, we will look at how the
C-code is organized and discuss the low-level functions, which are OS specific. These are the functions
that will have to be rewritten in order to port the library to other platforms.

7.1 Structure of the library

If welook at a game, written in Clean, using the game library, we could define three levels of code. At
the highest level, we have the code of the game itself, asthe (game) programmer wrote it. At the
second level, we have the part of the game library written in Clean and the lowest level isthe C code.
Actualy, the middle level (the Clean library) isaso divided into certain levelsitsdlf, but we will now
look at the library as one level of code.

7.1.1 Levels of information

The three levels work with different kinds of information. Figure 7-1 shows which information
concerning the game is available at these three levels of code:

game code (Clean)

Complete game specification (Game gs)
includesinitial state for each type of object

Initial game state

game library (Clean)
Extended game specification (GameHandle gs)
includes list of instances (ID and object state) for
each object type

Game state

game engine (C)

Objects (ID and object record)

Figure 7-1: Available game information at three levels of code

Aswe seein thisfigure, the game code written by the programmer (the top layer) only containsinitial
values for the objects and for the game state. Thisis because the programmer only provides a
specification of the game and then gives full control to the library by starting the interpreter function

38

OpenGame. The specification is meant to be as clear as possible for the programmer but does not have
the optimal structure for the internal representation of the game. For this reason, thereis a second game
type, called GameHandle. Thistypeis very similar to the normal game definition, but also has
information that is not interesting to the programmer. We will discuss this extended game definition
typein §7.2.

The most important information that controls a game is separated in three areas: the game state, the
object state and the object records. The game state and the object state belong to the Clean part of the
library and the object records are stored in the C part.

7.1.2 Communication between levels of code

The communication between the two Clean code levelsisvery simple, thereis one call from the game
code to the library (OpenGame) which runs the compl ete game. The complete game definition is given
as aparameter aswell asalist of attributes and the initial game state. The OpenGame function will
then run al the levelsin the game and finally return when the game has ended.

Communication between the Clean library and the C code is much more interesting, because of the
call-back functions. Figure 7-2 shows some examples of call-back functions which take place while
running alevel. We use these call-back functions because al the object's events, written by the
programmer are functions, which must be evaluated at runtime.

The Clean code and the C code both run in different threads. Switching between these threads takes
time and shouldn't be done more than necessary. Some calls from the Clean thread to the C code can be
done without switching these threads, such asthe functionsto store and retrieve the object records.
These functions are called asif they belong to the Clean thread.

Clean code C code

runalevel | _ |
| bl
~ | eventx for object id
get object record forid | _,
~ | object id's object record
Lo '
cal library function fromevent | _
« | return from library function
Lo
store modified object record | _,
~ | object record has been stored
return fromevent | _
: -
~ | get new layer position
new layer position | _
; L
~ | send al atistics now
write statisticnat (x,y) | -
~ | Return
al statisticsdone |
' bl
~ | check quit function
return quit value | _,

: o
| « | quitleve
Figure 7-2: Call-back functions

Aswe see, after the game engine is started, it keeps calling Clean functions to control the game. During
every frame, four different types of call-back functions are eval uated: object event handling (8§7.1.2.1),
layer positioning (87.1.2.2), statistics (87.1.2.3) and checking the quit function (§7.1.2.4). Here, we see

39

only afew examples of these call-back functions, the actual number of calls depends on the number of
objects, layers, and statistics.

7.1.2.1 Object event handling

The object events are the most complicated call-back functions. Thisis because the code for the event
handlers, defined by the programmer of the game, may contain callsto library functions (such as
CreateNewGameObject and CreateUserGameEvent).

All object events are handled in asimilar way. First, the game engine decides that the event will take
place for a certain object. It sends a message to Clean telling the type of event, the object type and the
ID of the object the event occurred for. In some cases, there is more information. For example, the
information for the collide event will aso include some information about the other object (object type
and I1D) and the directions of the collision. Each type of event has its own parameters.

The Clean library has a complete game definition, containing all the events for each object type, as
defined by the programmer. In addition to this, the library also keeps a list of instances for each object
type for objects that are active, containing their object state.

After receiving the information that a certain event has taken place, the Clean library will request the
complete object record from the game engine. The complete object record is then sent to the Clean
library and decoded in order to fit in the object record definition. Depending on the type of event, more
information might be needed from the game engine. In case of a collide event, the complete object
record of the colliding object will aso be retrieved.

At thistime, the Clean library has al information needed to evaluate the objects event code. The object
state, the object record and the game state are the usual parameters for these events. The object's event
code will usually change thisinformation, so the new (modified) object record must be sent back to the
game engine. To do this, it isfirst coded into a more simple type, which is sent to the game engine. Of
course, the object state will also be stored in the list of instances.

Event handling is rather time consuming, because object records have to be retrieved and stored for
every event. Even if the event function isvery simple, like in the following example, the object record
isdtill retrieved and stored.

\(state, objectrec) gs - ((state, objectrec), gs)

Thisis why we want to reduce the number of eventsthat are actually generated by the game engine as
much as possible (as described in Chapter 5).

During evaluation of the object's event functions, several library calls can take place. The game engine
always knows which object's event is being handled, so it knows which object calls each function. This
is needed for functions like CreateObjectFocus, which sets the focus to the object that calls this
function.

7.1.2.2 Layer positioning

We have already seen that each layer has a function movement. This function returns a new position for
the layer, given the current position in the game and the game time.

During each frame, this function is called after all object events have taken place. At thistime, the
positions of al objects are known, including that of the object which has the focus.

The movement function is always called for all layers just before the game engine starts to draw these
layers.

7.1.2.3 Call-back functions for statistics

After dl the layers have been drawn, it istime to write the statistics. As we have seen, the statistics are
defined by a function statistics in the game definition.

First, the game engine sends a message to Clean, saying that it isnow timeto send dl the statistics. The
Clean library will then evaluate the statistics function, which returns alist of all the statistics. Instead of
sending the complete list to the game engine, al elements are sent to the game engine one by one and
directly drawn (written) to the screen.

After that, the call-back function returns, and all statistics are ready.

7.1.2.4 The quit function

Just like the statistics function, the quit function is a so defined in the game definition. It only returns
True or False (quit or don't quit yet). Thisfunction is always called after a complete frame has been
displayed.

7.2 Internal representation of agame

When a game starts, its definition isfirst trandated to a new datatype, called GameHandle. Thistypeis
almost the same as the Game type, but has some additiona information, which is not relevant to the
programmer. Such information includes object I1D's, bitmap ID's, lists of object instances, etc.

In this section, we will take alook at thisinternal representation.

7.2.1 GameHandle
The definition of GameHandle gsis just about the same as that of Game gs:

GaneHandl e gs

={ levels’ :: [Level Handl e (GSt gs)]
, quitlevel™ :: (GSt gs) - (Bool, GSt gs)
, nextlevel™ :: (GSt gs) - (Int, GSt gs)
, statistics® :: (GSt gs) - ([Statistic], GSt gs)
}

The only difference (gpart from the names) isthat levels are defined as LevelHandle (Gst gs) instead of
Level (GS gs).

The trandation from a Game gs to a GameHandle gsis very simple. Only the levels change into a new
type LevelHandle.

createGneHandl e :: (Gane .gs) - (GaneHandl e .gs)
creat eGneHandl e {l evels, quitlevel, nextlevel, statistics}

={ levels’ = map createlevel Handl e | evel s
, quitlevel™ = quitlevel
, nextlevel ™ = nextlevel
statistics® = statistics

7.2.2 LevelHandle

When we look at the LevelHandl e type, again we see that it isamost equa to the Level type, only
objects has changed from [Object state] to [ObjectHandle state] .

Level Handl e state

= { boundmap’ ;. BoundMap

, initpos’ ;. Point

, layers’ ;. [Layer]

, objects’ ;. [Obj ect Handl e st at e]
musi ¢’ ;. Maybe Music
soundsanpl es™ :: [SoundSanpl €]

, leveloptions® :: Level Options

}

The createl evelHandle function is also very simple, just like createGameHandl e, it copiesall the
fields from the level to the levelhandle. Only the objects are changed:

objects” = map Creat eCbject Handl e obj ects

a4

7.2.3 ObjectHandle

The ObjectHandle isthe first type that is realy different from the original definition. Two new fields
have been added: spriteids and instances.

oj ect Handl e gs

= E. state:
{ objecttype’ Obj ect Type
, Sprites’ [Sprite]
, Spriteids’ [Spritel D]
, instances’ [(Instancel D, state)]
, init” ! SubType ! Point ! GaneTine !gs
> *(!*(state, ObjectRec), !gs)
, done’ I*(state, ObjectRec) !gs
2> *(1*(oj ect Type, SubType), !gs)
, nove’ I*(state, ObjectRec) !gs
> *(!*(state, njectRec), !gs)
, animation’ I*(state, ObjectRec) !gs
2> *(!*(state, ObjectRec), !gs)
, touchbound® I*(state, (bjectRec) !DirectionSet ! MapCode !gs
> *(!*(state, ObjectRec), !gs)
, collide I*(state, ObjectRec)
IDirectionSet ! (bjectType ! ObjectRec
> *(!*(state, ObjectRec), !gs)
, frametimer’ I*(state, ObjectRec) !gs
> *(!*(state, bjectRec), !'gs)
, keydown® I*(state, ObjectRec) !KeyCode !gs
> *(!*(state, ObjectRec), !gs)
, keyup® I*(state, ObjectRec) !KeyCode !gs
> *(!*(state, njectRec), !gs)
, userevent’ I*(state, ObjectRec)
I Event Type ! Event Par ! Event Par
2> *(!*(state, ObjectRec), !gs)
}
Spritel D
== 1Int
I nstancel D
== Int

The new field spriteids’ isalist that corresponds with the list of spites and containsan ID (number
needed for communication with the game engine).

Theinstances' field isused to store alist of all instances of the object that are active in the game
engine. We need this to store the object state for each object. Objects are identified by their own unique
ID (called Instancel D here).

The trand ation from Object gs to ObjectHandle gsis still simple, al fields are copied and spriteids’
and instances’ areinitialized with the empty list. The instances’ field remains empty until an object is
created. Theinit function isthen called, which returns anew state. This new stateis stored in the
instances’ list.

The spriteids’ field isfilled when all the game bitmaps are initialized. Thisis done before the game
engine starts to prevent delays during the game. When we initialize a new sprite, the game engine
provides an 1D, which we use to indicate that sprite. ThisID is stored in the spriteids’ field, at the same
position asthe original sprite in the sprites’ list.

More interna information about the game is kept by the Clean library, but not in the gamehandle. The
function that actually calls the game engine, PlayLevel, also keeps lists of ID's for bitmaps and
complete layers, because their memory has to be released after the level isfinished. We will not discuss
thisinformation here.

42

7.3 Low-level functions

The C-code belonging to the game library, is actualy divided into two separate source files,

cGareLi b. ¢ and cOSGarreLi b. c. Thefirst contains the system independent parts of the game engine
(moving objects, checking collisions, etc.) and the second contains the OS specific cals. Thisisto
make it easier to port the game library to other platforms.

Declarations for the functions available from Clean are madeini nt r f ace. h, other functions are
called fromcCrossCal | . c. The following source and object files areinvolved:

intrface. h

cCrossCall.c (cCrossCall.obj)
cGanelLi b. h

cGnelib. c (cGneLi b. obj)
cOSGanelLi b. h

cOSGaneLi b. ¢ (cOSGaneLi b. obj)
DDUTI L. H

DDUTI L. CPP (ddutil. obj)
DSUTI L. H

DSUTI L. C (dsutil.obj)

The DDUTIL and DSUTIL files contain utility functions for working with DirectX (DirectDraw and
DirectSound). To use the DirectX functions, the following library files have been included:
ddraw_library (ddraw.dll), dsound_library (dsound.dll) and winmm_library (winmm.dll).

In order to port the library, all files beneath cOSGameLib.h will have to be changed. We will now look
at the functions that would have to be trandated. There will probably also be parts of cGameL.ib that
would have to be changed, because this contains some code which has the same level as cCrossCall
(such as setting up window classes and writing text).

7.3.1 Game result codes

Most functionsin the game library return either a boolean vaue (True for success and False for failure)
or one of the following result codes:

R X

GR_FAI LED
GR_CS_ERRCR

GR_| NVALI D_BI TMAP_I D
GR_ I NVALI D_SPRI TE_I D
GR_| NVALI D_MAP_| D
GR_NOT_FOUND

[T S T T
OO WNEO

These result codes are used mainly in the bitmap functions and are returned to the Clean layer. GR_OK
indicates that nothing went wrong, GR_FAILED is used when afunction fails and none of the other
error codes are applicable. GR_OS_ERROR indicates an OS-specific error (in the Windows
implementation, thisis an error returned by DirectX calls). GR_INVALID_BITMAP_ID,
GR_INVALID_SPRITE_ID and GR_INVALID_MAP_ID are returned when abitmap id, a spriteid or
a (layer) map id does not exist. The last result code, GR_NOT_FOUND is returned by functions that
load files from disk (or from the resources) if the file cannot be found.

7.3.2 Screen functions

The first group of functions takes care of the screen or the window in which the game runs. To make a
game run smoothly, we use double buffering. This means that we don't draw images directly to the
(visible) screen, but to a buffer (the virtual screen). Once every frame, the visua and the virtual screen
are swapped (thisis called a page-flip).

The following screen functions are defined:

7.3.2.1 OSInitGameWindow

This function sets up agame window and initializes everything needed for page flipping. The
parameters are globd integer values: i ScreenWidth, i ScreenHeight and iBitsPerPixel, which are

initialized by the cross-call code in cCrossCall.c. The first two define the screen resol ution, the third
defines the color depth used in the game. There is actualy aforth parameter, the boolean value
bFull Screen. This indicates whether the game is played on a full screen or in awindow. In the
Windows implementation, this value is dways True.

BOOL O8I ni t GanreW ndow ()

If setting up the game window goes wrong somewhere, the function returns Fal se (the game window
could not be opened), otherwise True (success).

7.3.2.2 OSDelnitGameWindow
This function is called before the program terminates and can be used to restore the screen mode etc.

voi d OSDel ni t GaneW ndow ()

7.3.2.3 OSClearScreen

OSClearScreen clears the visual screen with black. This function has no parameters and no return
value.

voi d OSC ear Screen ()

7.3.2.4 OSFillBlack

Thisfunction clears an area on the visual or virtua screen with black (depending on the first boolean
parameter vi s, True: visua screen, False: virtual screen). The second parameter r describes the area
on the screen that will be cleared.

void OSFillBlack (BOOL vis, RECT r)

7.3.2.5 OSClearVirtualScreen

This function clears the virtual screen. Here, acolor can be given as parameter and the virtual screen
will befilled with this color.

voi d OSO ear Virtual Screen (COLORREF c)

7.3.2.6 OSBIit

The OSBIit function copies (blits) an areafrom the virtual screen to the visual screen. The only
parameter r describes the areathat will be copied.

void OSBlit (RECT *r)

7.3.2.7 OSFlip

Thisisthe page-flipping function. This function waits until the video hardware is ready to draw a next
frame on the screen and then swaps the visual and virtua screen, making the virtual screen visible. This
flipping should be done as fast as possible.

void GSFlip ()

7.3.2.8 OSGetGameWindowHDC and OSReleaseGameWindowHandle

These two functions are used to get the window handle and release it again. This handleis needed
when we want to write text to the window. Because writing text is not very specific for only games,
thiswas not added to cOSGameLib. When porting the game library, there will probably already be a
way to write text to awindow.

BOOL OSGet GaneW ndowHDC (HDC * hdc)

voi d OSRel easeGaneW ndowHandl e (HDC hdc)

7.3.3 Bitmap functions

The next group of functions contains the bitmap functions. Most of these functions are only used to
work with the bitmaps themselves and may not seem very OS dependent. However, some platforms
have away to store these bitmaps in video memory, which will usually make working with them alot
faster. For this reason, all bitmap handling is donein cOSGameL.ib.

We work with game bitmaps, which are actually collections of small bitmaps stored together in one
large bitmap.

7.3.3.1 OSInitGameBitmap

Asthe name indicates, this function initializes a game bitmap. The bitmap is loaded into memory so it
can be digplayed on the screen fast. The first parameter isthe ID for the bitmap. If thisvalueisO,
OSInitGameBitmap will create anew ID for the bitmap.

int CSlnitGanmeBitmap (int id, char *nane,
int bitrmapwi dth, int bitmapheight,
int blockw dth, int blockheight);

The second parameter, nane, contains the file name or resource name of the bitmap.

The other parametersindicate the size of the bitmap (bi t rapwi dt h and bi t maphei ght) and define
how the large bitmap is divided into smaller bitmaps (bl ockwi dt h and bl ockhei ght).

The result of thisfunction is either avalid bitmap ID (>0) or a Game Result Code.

7.3.3.2 OSFreeGameBitmap
This function frees a game bitmap from memory, given its bitmap ID.

int OSFreeGaneBitmap (int id)

7.3.3.3 OSGetGameBitmaplinfo

This function is used to retrieve information about a bitmap. Given avalid bitmap ID, it will store the
width, height, block width, block height, number of blocks horizontally (bl ockcount x) and vertically
(bl ockcount y) in the six integer parameters.

BOOL OSGet GanmeBitmaplnfo (int id, int *width, int *height,
int *blockw dth, int *bl ockheight,
int *blockcountx, int *blockcounty);

7.3.3.4 OSFreeGameBitmaps
This function frees the complete list of game bitmaps that have been initialized.

voi d OSFreeGaneBit maps ()

7.3.3.5 OSSetTransparentColor

OSSetTransparentColor makes a bitmap transparent. There are three parameters: abitmap 1D, and ax
and y position of a point in the bitmap which contains the transparent color.

int OSSetTransparentColor (int id, int x, int y)

7.3.3.6 OSInitBlockSequence

This function initializes a sequence of tiles. These tiles belong to a game bitmap and the sequence
indicates a pattern in which these tiles are displayed. There are four parameters: the bitmap ID, the
sequence | D, a pointer to the sequence and the length of the sequence.

int OSlnitBl ockSequence (int bitmapid, int seqid, char *seq, int len)

The sequence ID isthe (negative) value used in the layer map to indicate the sequence. The sequence
itself isan array of integer values for tile number and number of frames, in turn.

7.3.3.7 OSRunBlockSequences

This function makes all tile sequences advance one frame. All tile sequences have an internal counter
indicating the current position. This counter will be incremented and reset if the sequence has ended.
There are no parameters.

voi d OSRunBl ockSequences ()

7.3.3.8 OSGetCurrentBlock

OSGetCurrentBlock returns the current tile from atile sequence. Thistile isindicated by its number
ing de the game bitmap and depends on the counter value of the sequence. The two parameters are a
bitmap ID and a sequence ID.

int OSCGetCurrentBlock (int bitmapid, int seqid)

7.3.3.9 OSDraw

Thisisthe function that draws part of a game bitmap to the virtua screen. This function should be as
fast as possible, becauseit is usually the bottleneck.

voi d OSDraw (RECT *dst, int id, RECT *src,
BOOL mirlr, BOOL mrud, int flags)

The first parameter, dst indicates the area on the virtual screen to which the bitmap will be drawn.
Then comes the bitmap ID (i d) and the source area on the bitmap (sr c). If the sizes of both areas are
not equal, the bitmap will be stretched to fit in the destination area.

There are two more boolean parameters for mirroring, mi r 1 r and mi r ud (mirror left / right and mirror
up / down) and an integer value f | ags, which contains a bit representation of the DisplayOptions type
defined in the game definition.

7.3.4 Sound functions
The last group of OS-specific functionsis formed by the sound functions. These functions are used to
play background music and to play sound samples.

7.3.4.1 OSInitSound

This function can be used to initialize the sound drivers when the program is started. It returns a
boolean value which indicates whether or not sound can be used.

BOOL O8I ni t Sound ()

7.3.4.2 OSDelnitSound

OSDelnitSound is called before the entire program terminates and can be used to close down the sound
system.

voi d OSDel nit Sound ()

7.3.4.3 OSInitSoundSample

This function loads a sound sample into memory, so it can be played during the game (without having
toload it at that time). There are three parameters: an ID for the sound sample, afile name (or resource
identifier) and the number of buffersthat will be reserved for this sample (so it can be played more than
once at the same time).

BOOL OSl ni t SoundSanple (int id, char *nanme, int buffers)

7.3.4.4 OSFreeSoundSamples
OSFreeSoundSampl es releases all the sound samples that have been initiaized.

voi d OSFreeSoundSanpl es ()

46

7.3.4.5 OSPlaySoundSample

This function plays a sound sample that has been initiaized before. The first parameter isthe ID of the
sound sample, which is the same as the ID used with OSInitSoundSample. The other three parameters
tell how the sampleis played: volume, pan (left / right balance) and the frequency.

BOOL OSPl aySoundSanple (int id, int volume, int pan, int freq)

7.3.4.6 OSPlayMusic

This function can be used to play background music (MIDI) during a game. This function has two
parameters. mi di f i | e: the name of the MIDI file and a boolean value that indicates whether the music
should restart when it has finished playing (r est ar t).

BOOL OSPl ayMusic (char *midifile, BOOL restart)

7.3.4.7 OSStopMusic
OSStopMusic stops any background music that is playing.

BOOL OSst opMusi ¢ ()

47

Chapter 8
Using thetools

This chapter describes the use of the tools needed to create sprites and complete levels. First we will
look at the sprite editor GRED, then the level editor EDLEV and finally some conversion programs
that are needed to convert sprites and complete level s to Clean code. Note that these tools were
developed as prototypes and have certain limitations. All these toolswork only in DOS. They were
primarily designed only to get the job done and can be alittle difficult to use. For this reason, one
should first read this chapter and experiment alittle with the tools, before starting to construct a
complete game (which is described in the next chapter).

8.1 Using GRED

The sprite editor GRED will run on any PC (286 or higher) with VGA running DOS. The syntax to
start GRED is:

GRED [filenanme] [-w width] [-h:height]
For example:
GRED eneny. 000 24 20

Without any parameters, GRED will start anew file with the size 32 by 24 pixels. The maximum size
allowed for spritesis 160 by 160 pixels.

F'l—HELF' 8.8 B @ @
Figure 8-1: GRED

Asshown in Figure 8-1, the screen is divided in a drawing area (left) and a color paette (right). On the
bottom of the screen, at the left we see the current drawing color (white here, index OF in the pa ette).
The numbers in the middle indicate the current cursor position (here 0,0) and on the right we have the
RGB values of the color at the cursor position (all zero here: black).

If amouse driveisinstalled, there will also be a mouse pointer in the center of the screen. But GRED
works very well with only a keyboard.

8.1.1 Cursor movement

When we first start GRED, the cursor is at the top-l€eft of the drawing area. By using the arrow keys, we
can move the cursor to any position on the matrix. In addition to the normal arrow keys for up, down,
left and right, we can also use the Home, End, PgUp and PgDn keys for diagonal movement.

By pressing the Tab key, we can switch between the drawing area and the palette. In the palette area,
we can move the cursor in the same way to select acolor. After selecting anew color, we can press Tab
again (or Enter) to select this color as the new (foreground) color or Esc to keep the old color. We can

also select anew background color by pressing Space. The background color is displayed in the box at
the bottom left of the screen around the foreground color (in Figure 8-1, the background color is black).

Another way to select anew color is by simply clicking on the new color in the palette area with the
mouse (left button for the foreground color, right button for the background color).

8.1.2 Drawing pixels

After selecting a color, we can now draw pixels. To draw pixels using the mouse, just press the | eft
mouse button. Using the keyboard, we can draw a pixel by moving the cursor to the correct position
and pressing the letter x (foreground color) or a Space (background color). Another way to draw pixels
in the foreground color is by holding the Shift key down and moving the cursor. Thiswill leave a 'track’
of pixels, useful for drawing straight lines.

With the right mouse button, we can select a color from somewhere in the drawing (instead of from the
palette). The same can be done by moving the cursor to a pixel with the desired color and pressing the
letter c.

8.1.3 Editing the palette

Normally, when we start GRED, the paletteisfilled with the standard VGA pal ette values (see Figure
8-1). The 256 color mode uses 6-bit palette entries, so all RGB values go from 0 to 63. The number of
unique colors we could possibly make with these RGB valuesis 64° = 262,144. However, we are
limited to a palette of only 256 colors. Therefore, the default paletteis unlikely to be very suitable for
our sprites and we will probably want to create our own.

In the pa ette area, we can edit the RGB values of a color by pressing the lettersr, g, b to increment the
red, green or blue value or the capitasR, G, B to decrement the values. Alternative keys are (numeric
keypad: Shift-7, 8, 9 (increment) and Shift-1, 2, 3 (decrement).

Aswe have seen before, thereis one color that is used as the transparent color. In GRED, thisis palette
index 0. Normally, this color is set to black, but by changing the RGB values of the transparent color,
we can see what our sprite looks like against different background shades.

In order to use severa of the advance functions in GRED (and EDLEV), the pa ette should be divided
into rows of eight shades of the same color, from |eft to right, dark to light (see Figure 8-2).

N

Figure 8-2: Pdette row in the pal ette area

GRED has a special function to make arow of smooth shades between two colors. This can be done by
selecting the first color (black in this example) as background color (Space) and then moving the cursor
to thelast color (white) and pressing * on the numeric keypad. It is aso possible to pick up a palette
row (Del) and paste it somewhere else (Ins).

After defining a complete palette for our sprites, we save this palette asDEFAULT. PAL. GRED aways
looks for a palette file with this name at startup and automatically loads the paette if found. We can
have one default palette in adirectory, so we will usually use separate directories for sprites using
different palettes (thisisto avoid having to load a palette manually each time we edit sprites). Palette
files can be loaded with Shift-F9 and saved with Shift-F10.

8.1.4 Loading and saving sprites

GRED usesits own file format, which is very simple: thefirst two bytesindicate the width and height
of the sprite and are followed by &l the pixels. There are several functions to export sprites and
generate Pascal, C or assembly code, but we will not need these here. We only have to be ableto load
and save our sprites (in GRED's own format), later we will use a conversion program to generate Clean
code.

Files can be loaded either by entering the name at the command line, or by pressing the F3 key. By
default, new files are loaded into the current image at the cursor position. By moving the cursor to the

49

top left corner first, we can load anew sprite and completely forget the old one. If the sprite we want to
load is transparent, we can use Alt-F3 to place this transparent sprite on top of our existing image.

After editing the sprite, we use Alt-x to save our sprite and exit. There are more keys for saving (such as
F4), but these will aso generate extra files we don't need.

8.1.5 Creating animation sequences

As we have seen before, animation sequences are lists of sprites that suggest movement when
displayed in sequence. The individua frames only have small differences. How do we create such
animation sequences?

We will start by creating the first bitmap and saving it with a name followed by the extension . 000.
Thiswill be our first frame. Then we save the same file again, now with extension. 001. Now we have
a sequence with two frames and we can go back and forth with Ctrl-PgUp and Ctrl-PgDn. We can now
start editing the second frame and check how the animation between these first two frames looks.

Every time we want to add a frame, we save one of the previous with a new number as extension and
then make changes to the new frame. While moving through the sequence, the frames are automatically
saved to disk.

8.1.6 Blocks

There are some functions in GRED that use blocks, such as drawing rectangles. Blocks are defined as
the area between thelast position at which F5 was pressed and the current cursor position. So, to draw a
rectangle, we go to one corner, pressF5, then move to the opposite corner and press the key for a
rectangle (Ctrl-F5). Other block functions include: Mirror left/right (Shift-F1), Mirror up/down (Ctrl-F1),
Fill block (Shift-F5), Fill block with random colors (Alt-F5), Make block lighter (F7) or darker (Shift-
F7), Draw acircle (Alt-F7), Scale (F8) and Smoothen area (Alt-F8). For amore detailed list of available
functions, see the README. TXT file that comes with GRED.

By using the F5 key in the palette area, we can make pal ette rows active or inactive. Some of the block
functions, like random fill, scaling and smoothening, will then only use colors that are selected. If no
rows have been selected, only colors between the foreground color and the background color are used.
For example, if we want to create ablock of random pixels using only two colors, we can set select a
background color and aforeground color right next to each other, then do the random fill.

8.1.7 Some more functions

There are afew more useful functionsin GRED. First of all, by pressing Alt-1...9, we can change the
size of the grid. Alt-0 shows the sprite at actual size on an empty screen and Alt-- shows a complete
pattern of theimage.

We can change the size of the sprite with Alt-H (change horizontal size) and Alt-V (vertical size). Itis
also possibleto insert aline (horizontal: Ins, h or vertical: Ins, v). We can move the entireimage Up,
Down, Left and Right with Ctrl-u, d, l andr.

There are functions to fill ahorizontal or vertical line with the foreground color: Ctrl-h (horizontal line)
and Ctrl-v (vertical line). The letter f fills an area (flood fill).

Thereisaso away to change color into another color in the entireimage. This can be done by moving
the cursor to apixel with the old color and pressing Alt-c. We can then select anew color and this will
be replaced everywhere in the image. Another very useful function isto change a complete group of
colors. For example, in Figure 8-3 in the next section we have a drawing of a brown block, which only
uses one pal ette row. We can easily change the color of the entire block to blue, for example, keeping
all the origina shades. To do this, we select the new color as foreground color (any color bluein this
example) and press Shift-Tab. Then we have a blue block!

GRED even has an Undo function (F2), which works after most of the block functions (pressing F2
again will restore the original image). There is also aHelp function (F1), which contains a short list of
the most important keys.

A completelist of function keysisgiven in the file READMVE. TXT.

50

8.1.8 Example

To get alittle more used to GRED, we will look at the steps needed to create the block shown in Figure
8-3. Thisblock could be used as one of the building blocks for alevel of a game. This example shows
exactly how this sprite was made.

Figure 8-3: Example block

Here, GRED is started with the original DEFAULT. PAL, included with the program. First of all, we will
select the color of the block (a pa ette row): Tab, | (several times, choose a color), F5 to select the
pal ette row, and Tab again to return to the drawing area.

Now we create a block by pressing F5 at the top left corner, and then Ctrl-End, to move to the bottom
right corner. Here we press Alt-F5 (random fill block) followed by Alt-F8 (smoothen block).

Next, we will make the top and the |eft side lighter. We press Ctrl-Home, «, then F7 (lighter), End, F7,
End, F7, End, ... several times until the top looksright. The same for the left side: Ctrl-Home, t, then
F7, PgUp, F7, PgUp, ...

Finally, we will make the shadow at the bottom and at the right. We press Ctrl-End, F5 to set the new
block start position. We press |, Shift-F7, End, Shift-F7, End, ... and Ctrl-End, -, Shift-F7, PgUp, Shift-
F7, PgUp, ... and we're done, we can view a pattern (Alt--) and finally save the block and quit (Alt-x).

This small demonstration shows how fast some kind of sprites can be created in GRED. Using these
block functions requires some practice, but will eventually be much faster than drawing the whole
sprite with the mouse.

8.2 Using EDLEV

The level editor EDLEV works together with GRED and has the same system requirements. In order to
use EDLEV, GRED must be properly installed and there must be a pal ette file named DEFAULT. PAL in
the current directory. EDLEV has the following command line syntax:

EDLEV fil ename [bl ockwi dth bl ockhei ght]
For example:
EDLEV |l evel 1 20 16

The default block sizeis 32 by 24 pixels, just likein GRED. When started, EDLEV scans the current
directory for al existing blocks with extension . 000, . 001, . 002, etc. In order to use abitmap as atile
in the level editor, its extension must start with . 0.. and the bitmap must use the DEFAULT. PAL palette.

51

Figure 8-4: EDLEV

In Figure 8-4 we see a screenshot of EDLEV. At the bottom of the screen, we see the blocks (tiles) we
can work with. There are many more tiles, but only one row isdisplayed at atime. At thetop, we see
the editing area, in which we can create our level.

8.2.1 Cursor movement

The cursor movement in EDLEV isactually very similar to that in GRED. However, EDLEV has no
mouse support, everything is done by keyboard. We move the cursor around with the arrow keys, again
the Home, End, PgUp and PgDn keys control diagonal movement.

By pressing Tab, we can select one of our tiles. Here, again we can scroll through al our tiles with the
arrow keys. After choosing a new tile, we can press Enter or Tab to select it or Esc to cancel.

8.2.2 Drawing tiles

After selecting atile, we can draw thistile in the map at the cursor position by pressing the letter x. We
can pick up atile directly from the level map by pressing the letter ¢ (instead of selecting thistile from
thelist of tiles).

Tiles are often only small parts of alarger image. For example, look at the top of the pam treein
Figure 8-4, which is actualy one drawing, divided into nine separate tiles. We will usually want to
draw thesetilesin the same order. We can do thiswith Alt-9, which will draw arectangle of 3x3 tiles,
starting at the cursor position, starting with the current tile. We can do the same for 2x1 tiles (Alt-2) and
2x2 tiles (Alt-4).

We can aso create anew tile, by moving to an empty block and pressing Enter. Thiswill start GRED
with anew empty tile. In the same way, we can edit existing tiles, by pressing Enter at the position of
thetile we want to edit.

By pressing Backspace we can mirror the tile at the cursor position (left/right), Shift-Backspace will
turn the tile upside-down.

8.2.3 Combining tiles

Although we use EDLEV to edit only one single layer at the same time, it is possible to place one sprite
in front of another. These tiles will automatically be converted to one new tile later. To do this, EDLEV
always works with two layers, in which tiles can be placed, afront layer and a back layer. We can
switch layers by pressing Space. The border color around the screen indicates which layer we are
editing (blue = background, green = foreground). Normally, we create most of the level asthe
background layer and occasionally we want to put atile in front of another somewhere and use the
foreground layer for this. By pressing Alt-f, we can turn al the foreground tiles on or off and with Alt-b
we can toggle the background tiles. To swap the foreground and background tiles at a position we can
press Alt--.

8.2.4 Shifting colors

If we use a palette that is organized in rows of eight colors (as described in §8.1.3), we can easily
change the color of our tilesin EDLEV, without having to edit the tiles themselves. For example, if we
take the brown block shown in Figure 8-3, we can placeit all over our level in different colors. We do

52

thiswith the + and - keys, for shifting the color up and down by 8, or Shift-+ and Shift-- to shift the
color by one, making thetile alittle lighter or darker. The left pam tree in Figure 8-4 uses the same
tiles as the other one, but has color shift 2, which makesit lighter.

We can pick up acolor shift value with = and recolor another block with the same value with /.
Pressing * will restore the origind color of atile (set the color shift valueto 0).

In the end, new tiles will be generated for al different colors of the same sprite.

8.2.5 Copying tiles

We can select ablock in EDLEV by pressing Shift-Space at one corner and moving the cursor to the
other. After selecting an area, we can copy it with Shift-c. Then we can move the cursor to a new
position and press Shift-x to draw the entire block at the cursor position.

To copy and paste individual tiles, we can use the keys|[(copy tile at cursor position) and] (paste the
tile). This copiesthe entiretile, foreground and background, and color information.

8.2.6 Bounds and map codes

While editing alevel, we can also define the static bounds (as described in §2.10). At each positionin
the map, we can define a Left, Right, Upper and/or Lower bound. These bounds are displayed by
dotted lines at the edge of thetiles. We can turn bounds on or off using Shift together with the arrow
keys on the numeric keypad. For example, Shift-1 creates an upper bound for thetile at the cursor
position. While editing, we can turn the bounds on or off with Alt-z.

We can aso insert amap code at any position. Map codes are hexadecima numbers from 01 to FF and
can be used for any purpose, usualy for initializing objects (see §2.10).

To enter amap code, we press Ins and then two digits. To remove a code, we simply type the code 00,
which is never displayed.

8.2.7 Tile sequences

Thereisone special map code, that is recognized by EDLEV, code FF at the top |eft corner of the
entirelevel. If welook back at Figure 8-4 again, we see the map code FF (top |eft), some sunflowers,
again code FF and more sunflowers. Thisisthe definition of two tile sequences.

If alevel has any tile sequences, these must be defined at the top left of the level. Code FF on an empty
tileindicates a sequence. If there are very many of these sequences, the next lines may also be used.

FF | FF
30
30
FF
20
20

o o o o

Figure 8-5: Tile sequences example

Figure 8-5 shows an example of asmall level with three tile sequences (the shaded areas indicate tiles).
The actud level starts at column 3 and has width 5. The numbers 30, 20 and 5 indicate how long each
tileis displayed. Thefirst tile sequence has two tiles that are displayed in turn for 30 frames.
Everywhere in the level where thefirst tileis placed, this sequence is shown. So in the level shownin
Figure 8-4, everywhere where we draw a sunflower, it will automatically become a sequence.

53

8.2.8 Other functions in EDLEV

EDLEV isalittle less advanced than GRED, it has no Undo function and no Help screen (yet). But
here are some more useful functionsin EDLEV.

Using Alt-h and Alt-v, we can set the horizontal and vertical size of the level to the cursor position. Just
likein GRED, we can insert a horizontal line with Ins, h and avertical line with Ins, v. The F10 key
shows a map of the whole level. We can quit EDLEV and save our level by pressing Alt-x, or quit
without saving with Esc.

8.3 Generating Clean code

Now we have learned how to create sprites and complete layers, we will now want to use them in our
Clean programs. There are still two conversion programs we need to run. The first will generate agame
bitmap for agiven level, including only thetiles that are used in thislevel. The second will trandate all
thisinformation to a Clean modul e, which can then be included into our source code. The reason for
two separate programs is that the level editor was not only designed for use with Clean, but also for
other languages. So after creating a game bitmap we might want to convert the data to other formats
instead of Clean code.

However, thereis a script file CONV which calls both of these programs. Thiswill be discussed in the
next chapter, when we will specify a complete platform game.

8.3.1 MAKEDX

The program MAKEDX isthefirst of the two conversion programs. It will read a complete level, just
like EDLEV, using the palette DEFAULT. PAL and the tileswhich are located in the current directory. It
then searches for all unique tiles and generates a game bitmap, whichisa. BMP file. In addition to this
game bitmap, MAKEDX also produces a map of the layer, but still in binary format. This file hasthe
same name as the level, with extension . LEV. If our level file hastile sequences, these will be stored in
anew file with the extension . SEQ, and if the level contains any static bounds or map codes, the bound
map will aso be written to afile with extension . BND.

These new files contain a representation of the layer, very much as defined in our game definition, but
till in binary format.

8.3.2 MAP2ICL

The second conversion program is MAP2ICL. This program takes the output of MAKEDX and
generates a Clean module. We'll now look at an example of how alevel, made with EDLEV is
trand ated to a Clean module.

Figure 8-6: Examplelevel TEST

Figure 8-6 shows our small level. It'snameis TEST and it contains two tile sequences and some map
codes. This level also has bounds, but these are not visiblein thisfigure. We have nine different tiles.

Now we will run the first conversion program, MAKEDX:

MAKEDX TEST

After executing this command, we have four new files: TEST. BMP, TEST. LEV, TEST. SEQ and
TEST. BND. Thefirst is our game bitmap, displayed in Figure 8-7.

]

b e

"'\,_,1

= By

Figure 8-7: The new game bitmap TEST.BMP

After creating our game bitmap, we will now generate the Clean module. The program MAP2ICL
accepts two parameters, the first isthe name of the level file, the second isthe name we want to usein
Clean. Here, arelevel file nameis TEST and we will let MAP2ICL generate definitions starting with

TestLevel (for example: TestLevelBounds, TestLevel Bitmap, etc.):

MAP2| CL TEST Test Level

After running this program, two new files have been generated: TEST. DCL and TEST. | CL. The
generated files aways have the same name as the level (parameter 1) with. DCL and . | CL as
extension. These files have the following contents:

TEST. DCL:

definition nodul e TEST

import StdEnv, StdGaneDef

TestLevel Bitnmap :: GaneBitmap

TestLevel Map :: [{#Int}]

[{#Int}]

(I'nt,
(I'nt,

Test Level Bounds ::

Test Level Seq001 : :
Test Level Seq002 : :

Test Level Sequences :: [(Int, [(Int,

Int)1)]
TEST. | CL:

i mpl ement ati on nmodul e TEST

import StdEnv, StdGaneDef

TestLevel Bitnmap :: GaneBitmap

Test Level Bi t map
= { bitnmapnamre = "TEST. BMP"

, unitsize ={ w=24, h =241}

, dimensions = (13, 2)

, transparent = Just { x = 263, y = 23}
}

TestLevel Map :: [{#Int}]

Test Level Map = [{0,0,0,0,0,0,0,0,0,0,0, 0},
{0,0,0,0,0,0,0,0,0,0, 2,0},
{0,0,0,0,0,0,0,0,0,0, 4,5},
{0,0,0,0,0,0,0,0,0,0,6, 7},
{0,0,0,0,0,0,4,5,9,10,6, 7},
{9,10,0,-1,-2,0,12,13,7, 14, 6, 13},

{13, 15, 16, 5, 9, 10, 6, 7, 13, 14, 6, 7}]

Test Level Bounds :: [{#Int}]

Test Level Bounds = [{0,0,0,0,0,0,0,0,0,0,0, 0},
{0,0,0,0,0,0,0,0,0,0, 15, 0},
{o0,0,0,0,0,0,0,0,0,0, 3,1},

55

4096, 0, 2, 0},
6,3,1,1,9,2 0},
,2,0,0,8,2, 0},
,2,0,0,8,2, 0}]

Test Level Seq001 :: (Int, [(Int, Int)]
Test Level Seq001 = (-1,[(1,32),(3,32)]

~——

Test Level Seq002 :: (Int, [(Int, Int)])
Test Level Seq002 = (-2,[(8,32),(11,32)])

Test Level Sequences :: [(Int, [(Int, Int)])]
Test Level Sequences = [Test Level Seq001, Test Level Seq002]

We can now include this module in our Clean code with the statement:

i mport TEST

Now we have access to the game bitmap, the layer map, the bound map and the sequences.

56

Chapter 9
Specifying a platform game

In this chapter we will build a compl ete platform game to give an example of how to usethe library
we' ve created. To avoid spending too much time on the graphics, we will remake an existing game:
Charlie the Duck, agame originally written in Turbo Pascal. In Chapter 2 we have already seen a
picture of alevel from this game (Figure 2-2).

This new version of Charliethe Duck will only have afew small levels, becauseit is only meant asa
demonstration. The most interesting part is the definition of the objects, the main character Charliein
particular.

We will start by creating alevel that can scroll. Then we will add simple objectsto the level and finally
create the main character. After we have one complete level, we will build the rest of the game around
it (title screen etc.).

Note that current versions of GRED and EDLEV are only available for DOS. Since these programs
require startup parameters, the best way to run them is directly from the DOS command line or from a
DOS batch file.

In this chapter we will make use of somefilesin the Clean Game Library ZIP file, CGL.ZIP, which can
be downloaded from: http://home.wxs.nl/~mike.wiering/cgl/download.htm.

9.1 Getting started

Before we start programming, we will first set up auseful directory structure. We also have to setup the
sprite editor and the level editor to be able to use them efficiently while programming the game.

9.1.1 Directory structure

The level editor EDLEV and the sprite editor GRED are both written for 8-bit modes (256 col ors).
Both programs use a palette file named DEFAULT. PAL, which contains alist of the 256 RGB colors
that can be used. Though it is possible to load a new palette while editing a sprite, it isfar easier to
have one default palette that is automatically |oaded. But we probably do want to use more than 256
colorsin the entire game. Therefore, we will make afew different directories with their own
DEFAULT. PAL file. Changes made to the color palette will affect all bitmapsin the directory.

Another reason for creating separate directoriesis that some bitmaps are only used as blocksin alayer
and others are part of an animation sequence of a sprite. Having all these bitmaps mixed together only
makes it harder to find the one we' re looking for. While editing alayer, it isonly possible to use sprites
of one particular size. So it would also make sense to have all sprites of each sizein a separate
directory.

At this point, we probably haven’t decided exactly what the size of al our spriteswill be yet. Since we
will start with the layers anyway, we will use the following directory structure for now. Later we can
add directories as we create objects and levels.

We will start by creating a new directory Char | i e and unpacking the file TEMPLATE.ZIP (whichis
availablein CGL.ZIP) in this new directory. Thiswill create a subdirectory bi n which containsthe
programs we will need. We now have the following directory structure:

Charli e\
Charlie\bin

57

The highest level directory (Char i e\) will bethe place for our source code Char | i e. i cl, al code
generated by the level editor (include files) and aso al the files needed to run the game (final bitmaps,
music files and sound samples).

We will create some extra directories for the levels and the sprites:

Charlie\ bjects
Charl i e\ Backgr ounds
Charlie\Level 1

We will usethe directory Char | i e\ Obj ect s for sprites. Later, we might want to divide these sprites
into separate directories if we run out of palette colors, but for now, one directory is enough.

The directory Charlie\Backgrounds will contain bitmaps used for our backgrounds. Because we will
simply use one large bitmap for the complete background layer, we can have all background bitmaps
together. We will use anormal drawing program (not GRED) to create the background bitmaps.

The directory Charl i e\l evel 1 isfor al the blocks used in the front layer of the first level. These
blocks all use the same palette and have the same size. Later, when we want to make more levels, we
just add new directories.

The easiest way to create the directoriesis by using the batch (script) file NEWDI R, availablein
TEMPLATE. ZI P, which copiesal files needed to run GRED, EDLEV and CONV. We have aready
unpacked this ZIP file, so we can use the batch file NEWDI R. BAT. We can now create our directories:

NEWDI R Obj ect s
NEWDI R Level 1

Because we will use normal drawing programs to make the background bitmaps, instead of using
GRED, we will simply create the directory Backgrounds with the DOS command:

MKDI R Backgr ounds

In the two directories we created with NEWDIR, we now have four files: DEFAULT.PAL (default
palette file for GRED and EDLEV), GRED.BAT, EDLEV.BAT and CONV.BAT. These last three
batch fileswill start the programs from the BI N directory.

9.1.2 Clean compiler setup

Before we can compile our game, we must create a project file and setup the Clean compiler. We create
anew project named Char | i e. prj . Then we haveto set the link options so that the Game Library can
be used. To do this, we add the following library files: ddraw_library, dsound_library and
winmm_library. We will aso need the following object files: cGamelLib.obj, cOSGameLib.obj,
ddutil.obj and dsound.obj. Because the game library is built on top of the Object 1/O library, CleanIDE
must be started with extramemory: cl eani de -h 9M -s 400K, for example.

9.2 Creating layers

To create our game, we will start with thetemplateUnti t1 ed. i cl and nameit Charlie.icl.The
template contains the startup code and some useful definitions. Using thistemplate will save ustime
and enable usto start defining level s right away!

9.2.1 Creating a background layer

We will start by creating the background layer. To do this, we will use an ordinary drawing program
and create the bitmap shown in Figure 9-1. This bitmap has size 320x320 pixels, we name it
For est Backgr ound. bnp.

58

Figure 9-1: Background bitmap

We will now include this game bitmap in our game definition (Charlie.icl):

For est Background :: GaneBitnap
For est Backgr ound
= { bitmapnane
, unitsize
, di mensi ons
, transparent

}

Aswe seein this definition, this game bitmap has only one largetile. It also isn't transparent, because it
will be used for the most distant layer.

" For est Backgr ound. bmp"
{ w= 320, h =320}
(1, 1)

Not hi ng

Now we can define our background layer:

Level 1Background :: Layer
Level 1Backgr ound

={ bmp = For est Backgr ound
, layermap = [{1}]
sequences = []
, movenent = defaul tScroll Movenent 3
}

Because we only have one large tile which is repeated for the entire background, we define the layer
map as [{ 1}]. This background layer has no tile sequences, so we specify the empty list.

We want our background layer to scroll slower than the foreground layer so it will look more distant.
We can use a predefined movement function: def aul t Scr ol | Movenent . Using this function makes a
layer scroll at 1/n speed, where n isthe argument. In our definition, the background layer will scroll at
athird of the speed.

9.2.2 Creating the foreground layer

The foreground layer will be much more complex than the background layer we just created. We will
use the level editor to create this foreground layer. We will cal it Levell (note that we are confusing
levels with layers here, but because all the action takes place in this foreground layer, we are actually
defining the level itself, so we call it Level1).

We have already created a directory for thefirst level: Charl i e\ Level 1. Wewill now start creating
our foreground. In DOS, we go to thisdirectory and type: edl ev L1 20 16, which startsthe level
editor with anew level.

We use blocks of 20 by 16 pixels here. Choosing a good block size isimportant, because all tiles will
have this size. In some cases it can be useful to have square tiles, but here we will use rectangular ones.
Some common block sizes are 16x16, 20x16, 32x24, 32x32, but larger sizes can aso be used. In fact,
using large blocks of size 40x40, for example, will make the game much faster than using very small
blocks, like 8x8. The reason isthat there is alot more overhead when filling a screen with 8x8 pixe
tiles than with 40x40 pixel tiles.

59

Now, we just take our time to design the beginning of a beautiful level. We draw the ground, some
plants and trees... (see Figure 9-2).

Figure 9-2: Designing the foreground layer

While we are editing the level, we create the bounds right away. Most ground tiles have bounds, so we
define these bounds as we create the tiles and then just copy the compl ete tiles, together with their
bounds. We don't need any map codes yet, except one FF in the top left corner, for if wewant to define
atile sequence sometime.

Once we have (part of) alevel, we save it and return to DOS.

The next thing to do isto convert the level to aformat that can be used in our Clean specification. We
do thisby typing: conv L1 Level 1. Thiswill convert our level file L1 to anew Clean module (L1.dcl
and L L.icl), in which definitions are made. The names of these definitions will start with "Level1".

Because the template file we use is designed to load alevel L1 by default, we can now just run the
game and it will show the level we have just created against a black background. We can scroll through
our level using the arrow keys and exit by pressing Esc.

Of course, we want to use our beautiful ForestBackground as our background layer instead of a black
screen. To achieve this, we simply changethe value of fi | | backgr ound from Just Bl ack to
Not hi ng and insert our Level 1Backgr ound at the beginning of the layers list:

| ayers = [Level 1Background, Level 1Layer]

Now we can scroll through our first level and aso have a background that scrolls at athird of the
speed.

9.3 Creating simple objects

Our level isstill very empty, so we will now create some objects. Designing the main character right
away would be alittle complicated, so we will start with avery simple object: acoin that cannot move
and just waits until the main character collectsit.

9.3.1 Creating a static coin

We will want to put these coins somewhere in our levels, so we need a code for a static coin, which we
can place in the level map. We use the first available object code (not lower than the objstart value) for
this coin, whichis 10.

We start by just defining these coinsin our level asif we can aready use them. So we run the level
editor and enter the map code 10 at several placesin thelevel. Finaly, we save the level and run the
conversion script.

If we run the game now, we will see no change. The game engine will find code 10 in the bound map
and send a message to Clean, saying that object with object type 10 may beinitialized. But of course,
nothing will happen.

9.3.1.1 Creating sprites

Now, we will create sprites for the coin. We want thisto be a golden rotating coin so we will have to
create an animation sequence with frames that show the coin from al sides. Once the main character

60

grabsthe coin, later, we will want it to disappear in a pretty way, with glitter. So we will need a glitter
sprite aswell.

We have already created a subdirectory Char | i e\ Obj ect s in which we will draw the sprites.
Although we are only interested in the bitmaps we will create, we will usethe level editor to order
these spritesin groups.

We start the level editor, now from the Obj ect s directory: edl ev OBJ 20 16, which will create a
new level file named OBJ. We will use the same size block size as we did for the level. We draw our
coin from all angles and then aso draw the dlitter (see Figure 9-3), then save thislevel and type: conv
OBJ Obj ect s. Thiswill provide us with a game bitmap, named Obj ect sBi t map, which contains
these 12 animation frames (in the same order).

Figure 9-3: Designing animation sequences using EDLEV

As soon as we include the OBJ modul e to our definition, we can make use of our new bitmap and
define our sprites. Because we don’'t want to have to type long sequences of numbers, like [(1,30),
(2,30), (3,30), ..., (8,30)] for the coin's sequence, we will create a ssmple function BitmapSequence:

Bi t rapSequence :: Int Int Int - Sprite
Bi t rapSequence start count speed
| count == 0 = []

| otherwise = [(start, speed)] ++
(Bi t mapSequence (start+1) (count-1) speed)

Now we can define the coin sprite running at a given speed as follows:

CoinSprite :: Int - Sprite
Coi nSprite speed
={ bitmap = Cbj ect sBi t map
, sequence = BitmapSequence 1 8 speed
, loop = True
}

In amost the same way, we can define the glitter sprite:
GitterSprite :: Int - Sprite
GitterSprite speed

= { bitmap oj ect sBit map

sequence
| oop

Bi t mapSequence 9 4 speed
Fal se

)
Instead of l1ooping like the coin sequence, the glitter sequence will run only once.

9.3.1.2 Specifying the object

Now, we will specify the static coin object in our source code. We start by defining the coin's object
type (we have aready chosen the code 10):

OBJ_STATIC_CAO N : == 0x10

Thisisaso agood timeto define some of the bound types. We will have to be able to specify that the
our main character can collide with this coin and that this coin collides with the main character.
Because there will be several other objectsthat behave just like coins, we will give them all the name

61

power up. These are all the "good" items our main character can find in the level. We can now go
ahead and define the following bound types:

BND_MAI N_CHARACTER : == (1 << 0)
BND_POMER UP t== (1 << 1)

Because of the size of an integer, we are limited to 32 different bound types (of which two are
predefined: BND_STATIC_BOUNDS and BND_MAP_CODES. Because bound types will usually be
used by whole groups of object types, this should be more than enough.

Whenever we want to define a new object, we can take a defaultGameObject and change some
properties, instead of defining all properties one by one. This defaultGameObject is actually an object
filled with default values for all properties (no sprites, no movement).

The properties that we will have to change are:

* Sprites

» Collide event (The coin should detect a collision with the main character, so it can change itself
into glitter and eventually disappear.)

* Animation event (We will use this event to know when the glitter animation is finished.)

* The object record (We will need to define the bound types.)

Our definition becomes (note that the fina codein Charlie.icl isalittle different, but thisis probably
more readabl e):

St ati cCoi nObj ect
obj = defaultGaneCbj ect OBJ_STATIC CAO N size state
obj = { obj
& sprites = [CoinSprite 8, QditterSprite 25]
, init = (newinit size state)
, collide = newcol |lide
, animation = kil l object
}
= obj
wher e
newi nit size st subtype pos tine gs
(objrec, gs) = defaultbjectRec subtype pos size tine gs
objrec = { objrec
& ownbounds
, collidebounds

BND_POMER UP
BND_MAI N_CHARACTER

}
= ((st, objrec), gs)

newcol I ide (st, or) bnds objtype objrec gs
or = { or

& currentsprite =2

, options.renovemapcode = True
, ownbounds =0

, collidebounds =0

}

= ((st, or), gs)

size = {w =20, h = 16}
state = NoState

In addition to the properties mentioned above, we also had to redefinei ni t , in order to initialize
valuesin the object record.

Our sprite list contains two different sprites. The value of current spri t e isset to 1 by default, sowe
will seethe rotating coin at first. When the coin collides with the main character, thecurrent sprite
valueisset to 2 (the glitter sprite). Because this sprite does not loop, the ani mat i on event will occur
when the animation sequence has finished. This event has been set toki | | obj ect , which hasthe
following definition:

kill object (st, or) gs
= ((st, {or & active = False}), gs)

62

By setting the ownbounds and col | i debounds fieldsto 0, we make sure that nothing happens when
the main character touches the glitter when the coinis already gone. We also set

opt i ons. r enovenapcode to True, so the coin will not reappear after the main character has collected
it.

The last thing we still have to do before we see the coinsin our level, is add our new StaticCoinObject
tothelist of objects: GameObjectList (whichis used in the definition of Level1).

9.3.2 Creating a falling coin

In the previous section we created an object that could not move and just waits until the main character
grabsit. Now we will make another type of coin object, but this one falls down and bounces on the
ground.

Again, wewill gtart by choosing a code for the object: 11, define some of these objectsin our level (far
above the ground, so we can see them fall) and define the object type:

OBJ_FALLING CO N : == 0x11

Because the falling coin looks very much like the static coin, we will start with a static coin and then
change it into afalling coin:

Fal | i ngCoi nObj ect
= {StaticCoinCbject & init = (newnit size state)}
wher e
newi nit size st subtype pos tine gs
(objrec, gs) = defaultbjectRec subtype pos size tine gs

objrec =
{ objrec
& accel eration ={rx =0.0, ry =1.0/ 16.0}
, bounce ={ fvx = Value 0.0
, fvy = Factor (4.0 / 5.0)
bouncebounds

}
BND_STATI C_BOUNDS
{x =1, y = 8}

f orget di st ance
}
= ((st, objrec), gs)

size = {w =20, h = 16}
state = NoState

The new definition for accel er at i on, will make the object fall. The bounce factor will make the
coin bounce up with 4/5 of the speed it falls down, so it will eventually stop bouncing. By setting the
value of bouncebounds to BND_STATIC_BOUNDS, the coin will bounce againgt the bounds
defined in the bound map. Because the coin can now fall down, we make the (vertical)

f or get di st ance alittlelarger. Thiswill prevent the coin from disappearing right away if we scroll
the screen alittle.

Now we have created our second type of object. We only have to includeit in the GameQbj ect Li st .
In the same way we can create static diamonds and falling diamonds.

Aswe see here, we can reuse parts of objects we have created earlier and keep creating more complex
objects.

9.3.3 The background clouds

To make our level even moreinteresting, we will create some clouds in the background that do not
scroll a all. Thiswill make the game have three layersinstead of two. But instead of creating a
complete new layer for these three little clouds, which would make the game slower, we will use
objects for the clouds.

Unlike most other objects, these clouds must be drawn behind our foreground layer and not in front of
it. Actually, the clouds should be behind the background layer as well, but we wouldn't see them if they
were, because our background layer is not transparent. So we will just put them in front of the sky
(which has only one color anyway) and behind the front layer.

63

We will start by defining names for our layers:

LYR BACKGROUND :== 1
LYR FOREGROUND :== 2
LYR _PLAYER == 3
LYR | NFRONT == 4
LYR_STATUS :== 10

Using these layer definitions, we can place objects at different heightsin our level. We will usually
want our main character in front of everything (LYR_PLAYER), but in some cases, an object can bein
front of the main character (LYR_| NFRONT). For example, parts of the pam trees will be drawn in front
of Charlieto makeit look like Charlieisin thetree and not in front of it.

Later, we will add a status line at the top of the screen with the statistics. Thiswill always our highest
layer: LYR_STATUS.

The objects we have created before (the coins and diamonds) should be in the foreground, so we add
the following line to these objects:

| ayer = AtLayer LYR FOREGROUND

9.3.3.1 Using the Autolnit object

Because our clouds do not belong to one position in the map, we don't want to define them there.
Instead, we will use the Autolnit object to initiaize our clouds:

OBJ_AUTANT : ==

Aut ol ni t Qbj ect Level 1
obj = defaul tGaneChject OBJ_AUTO N T size state
= {obj &init = (newinit size state)}
wher e
size = {w=1, h =1}
state = NoState

newi nit size st subtype pos tine gs

(_, gs) = CreateNewGaneCbject OBJ_CLOUD 0 {x = 36, y = 50}
(_, gs) = CreateNewGaneCbject OBJ_CLOUD 0 {x = 88, y = 28}
(_, gs) = CreateNewGaneCbject OBJ_CLOUD 0 {x = 240, y = 43}
(objrec, gs) = defaultjectRec subtype pos size tine gs

= ((st, {objrec & active = False}), gs)

The Autolnit object isonly needed to start the clouds, so act i ve is set to False at the end of the
new ni t function.

Each level can have it's own Autolnit object, we call this one Aut ol ni t Obj ect Level 1. In our level
definition for level 1, we will then define our objects:

objects = [AutolnitQojectlLevell] ++ Ganebj ect Li st

Thisway, we can have a different Autolnit object for each level. Of course, we don't add this Autolnit
object to the GameObjectList aswell.

9.3.3.2 Defining the clouds

We still have to define the clouds themselves. To do this, we create a new set of sprites using the level
editor, now with large blocks: 40x24 pixels. We call our level CLOUDS and convert it with the
command: conv CLOUDS C ouds.

Back in our definition, we define a sprite for our clouds: O oudSpri t e, and specify acloud:

C oudvj ect
obj = default GaneChj ect OBJ_CLOUD size state
obj = { obj
& sprites [A oudSprite]

, init (newinit size state)

= obj

wher e
size = {w = 40, h = 24}
state = NoState

newinit size st _ pos tinme gs
(objrec, gs) = defaultbjectRec subtype pos size tine gs
objrec = { objrec
& options.static
, layer

True
At Layer LYR_BACKGROUND

}
= ((st, objrec), gs)
By setting opt i ons. st at i ¢ to True, the cloud will not move with the layer, but remain at the same
place on the screen al the time. The definition of | ayer sets cloud in the background |ayer.

In arather similar way, we use objectsin front of all the palm trees, which are drawn in front of our
main character (LYR_| NFRONT). These objects are not static though.

9.3.4 Crates with items

Throughout our level, we will have crates containing items for our main character (coins, diamonds,
hearts, lives, etc.). These crates break open when Charlie jumps on top of them and the item(s) appear
(see Figure 9-4).

Charliex 3] 4 x10 @=22 wv

5

B
DA,

Figure 9-4: Charlie opens acrate

Aswe seein the figure, the crate breaks into six small blocks which then fall off the screen.

First of al, we add the following definitionsto Char l i e. i cl :

BND BLOCKS : == (1 << 2)

OBJ_| NVI SI BLE_CRATE : == OxBO
OBJ_CRATE == OxQD
OBJ_CRATE_PART - == 0x100

We name the bound type BND_BLOCKS instead of BND_CRATE, because we will make more objects
with the same collision behavior. We don’t want any objects to go through a crate so they must bounce
againgt it. The only interesting collisions are those with the main character. Thisisthe same with a
bouncing block, which we will define later, so both will have BND_BLOCKS as bound type.

In addition to the normal crates, we also have invisible crates. These are exactly the same, but they are
not visiblein our level, so the player will find them by coincidence.

For objects we create during the game, we will use higher object types (0x100 and higher). Such codes
cannot be entered in the level map.

Crate OBJ_CRATE True

Crat ebj ect _
Crate OBJ_I NVI SI BLE_CRATE Fal se

I nvi si bl eCr at eCbj ect

CrateObj ect objecttype visible
obj = defaultGanme(hj ect objecttype size state

65

= { obj

& sprites = [CrateSprite]
, init = (newinit size state)
, collide = newcol |l ide
}
wher e

size = {w =20, h = 16}
state = NoState

newi nit size st subtype pos tine gs
(objrec, gs) = defaultbjectRec subtype pos size tine gs
objrec = { objrec

& | ayer = At Layer LYR_FOREGROUND
, ownbounds =if visible
(BND_BLOCKS + BND_STATI C_BOUNDS)
BND_BLOCKS

, col lidebounds
, currentsprite

BND_MAI N_CHARACTER
if visible 10

}
= ((st, objrec), gs)

Aswe see here, visible crates have BND_STATI C_BOUNDS as one of their bound types. This makes
other objects bounce and collide with these crates as they would with awall or a platform defined in
the level map. Invisible crates do not have this bound type, so objects can go through them.

The collide function isthe most interesting, of course:

newcol I ide (st, or) bnds othertype otherobjrec gs
| ((othertype == OBJ_MAI N CHAR) && (bnds. botton))

posl = or.pos
pos2 = {posl &y = posl.y + 8}
(_, gs) = CreateNewGanmehj ect OBJ_CRATE_PART 1 posl gs
posl = {posl & x = posl.x + 4}
(_, gs) = CreateNewGanmehj ect OBJ_CRATE_PART 2 posl gs
posl = {posl & x = posl.x + 4}
(_, gs) = CreateNewGanehj ect OBJ_CRATE_PART 3 posl gs
(_, gs) = CreateNewGanehj ect OBJ_CRATE_PART 4 pos2 gs
pos2 = {pos2 & x = pos2.x + 4}
(_, gs) = CreateNewGanebj ect OBJ_CRATE_PART 5 pos2 gs
pos2 = {pos2 & x = pos2.x + 4}
(_, gs) = CreateNewGnmeChj ect OBJ_CRATE PART 6 pos2 gs
or = {or & options.renovemapcode = True, active = Fal se}
obj = case or.subtype of
0 ->if visible OBJ_FALLING CO N OBJ_STATIC CO N
1->if visible OBI_FALLI NG DI AMOND OBJ_STATI C_DI AMOND
2 -> OBJ_HEART
3 -> OBJ_LIFE
(_, gs) = CreateNewGanmeChject obj 0 or.pos gs
= ((st, or), gs)
= ((st, or), gs)

Here we see how the create breaks into six parts, which are all separate objects. Finally, the item in the
crateis created according to the crate's subtype. The crate object itself is destroyed. When we define a
cratein our level map, weinsert a CO (or BO for invisible) and aboveit, a0, 1, 2 or 3 for the different
kinds of items. Whenever a crate has another crate on top of it, it can only contain acoin (subtype 0).

The CratePart object is not very interesting. According to it's subtype, the speed is set to a standard
value and then arandom value is added to make the crates open alittle differently each time. The
object is at the front layer (LYR_I NFRONT) and is destroyed as soon as it falls off the screen.

9.3.5 Creating enemies

Next, we will create some enemiesin our level. These enemies just walk in a straight line and turn
around when something isin their way. If our main character jumps on top of such an enemy it will die
and fal off the screen. At some placesin the map, we will put map codes to make this enemy turn
around and not fall off aplatform, as shown in Figure 5-2 (it wouldn't fall actually, it would just keep
walking in the air with no ground beneath it). We will indicate this enemy on the map by code 80.

66

We start by drawing sprites for the enemy and adding the following definitionsto our Char l i e. i cl :
OBJ_ENEMY : == 0x80
éf\lD_ENEIW == (1 << 3)

We will only look at the newinit function of the enemy, therest is very much the same as previous
objects.

newinit size state subtype pos tine gs
(objrec, gs) = defaultObjectRec subtype pos size tine gs
objrec = { objrec

& speed ={rx = ~0.5, ry = 0.0}
, bounce = {fvx = Factor 1.0, fvy = Value 0.0}
, layer = AtLayer LYR_FOREGROUND
, options = { objrec.options
& automrrorleftright = True
}
, ownbounds = BND_ENEMY
, bouncebounds = BND_STATI C_BOUNDS + BND _ENEMY +

BND_MAP_CODES
BND_MAI N_CHARACTER

{x =6, y =4}

, collidebounds
, forgetdi stance

}
= ((state, objrec), gs)

This enemy walks half a pixel per frame, so it will move once every two frames. Whenever it touches a
wall (vertical bound), it will turn around and continue with the same speed. Because of the
autonirrorleftright value, the sprite will be mirrored after it turns around. The bouncebounds
value includes map codes, so the enemy will turn around when it finds a code in the map.

The only real collisions are with the main character. The collide function checksiif the colliding object
isamain character coming from the top (in the same way the crate does). If so, the enemy killsitself.

9.3.6 Creating the bees

The next enemy in our game will be aflying bee. We will makeit fly randomly, by adding small
random valuesto it's horizontal and vertica speed alittle once in awhile. We will do thiswith the
nove event. This event can be generated every frame if we want it, but we will skip a random number
of frames between each nove event, so we will make a new move function:

nove = newnove

Again, most part of the bee's code looks alot like other objects, so we will only look at the most
interesting part, the movement.

First of al, we will need afew random functions: one for integer values and one for very small rea
values:

/* get randominteger value 0..n */
IRnd n gs = (Rand remn, gs)

/* get random Real value ~n..n */
RRnd n gs =

(n* (((toReal Rand) / max) - ((toReal Rand) / max)), gs)
wher e

max = (toReal MaxRand)

Inthe bee'snewi ni t function, we set itsinitial speed to{rx = ~0.5, ry = 0.0} andthe
ski prove valueto 0. Thiswill make the nove event occur as soon as possible.

Our new move event looks like this:

67

newnmove (st, or) gs
(turn, gs) = IRnd 30 gs
(xadd, gs) = RRnd 0.05 gs
(yadd, gs) = RRnd 0.085 gs
(sknv, gs) = IRnd 25 gs
rxv = (if (turn == 1) (~ or.speed.rx) (or.speed.rx)) + xadd
ryv = or.speed.ry + yadd + 0.005
or = {or & skipnmove = sknv, speed = {rx = rxv, ry = ryv}}

((st, or), gs)

To change the movement, we take two small random numbers and add them to the speed. This bee will
turn around about oncein every 30 times. By setting ski pnove to arandom value, the bee will move
with the same speed for some time and not be too unpredictable.

9.3.7 Creating frogs

The frogs are actually very easy to make now, they behave just like normal enemies, but they jump
instead of walk. We create gravity with the object's acceleration value and then let the object bounce.
The horizontal bounce valueisFact or 1. 0, which makes the object turn around with the same speed.
The vertical bounce valueisVal ue 2. 0. Thismeansthat the faling frog will start moving in the
opposite direction with speed 2.0. Thiswill make the frog always jump with the same strength.

objrec = { objrec

& speed ={rx =~1.0, ry = 0.0}
, acceleration = {rx =0.0, ry = 1.0/ 16.0}

bounce = {fvx = Factor 1.0, fvy = Value 2.0}
}

9.3.8 Other objects

Now we have seen several types of object, we will only take a quick look at the other objectsin our
game, before we look at our main character in the next section.

We have some more power up items: hearts and lives. These work just like the falling coins.

There is aso water with moving waves. These waves are objects, which are placed at the
LYR_| NFRONT layer. When our main character falsinto the water, we will see the water splash. Thisis
also done with objects, which only show an animation sequence once and then stop existing.

Another object that exists for only a short timeis the flash object. We see this flash every time our
main character kills an enemy by landing on top of it.

We also have bounce blocks that behave like ordinary blocksto all creatures except the main character,
which will be able to jump very high from such a bounce block.

At the end of our level, we have an object that Charlie must touch in order to complete the level, the
EndingOjbect. This object rotates for awhile after Charlie has touched it and then it stops.

In our second level we have afew more objects: the sharp pins, which kill our main character right
away, bounce blocks that move (these are exactly the same as normal bounce blocks, only their speed
isdifferent). There are also some wall objects which make it possible for our main character to go
behind awall. These work in the same way as the objectsin front of the palm trees.

Finally, we also have a few objects for our status line (see Figure 9-5), the diamond, the coin some
hearts and the little 'x' and ":', which are also objects.

Ll e -2 A1 i A e L L
Figure 9-5: The statusline

We use these objects together with the statistics to make the status line more interesting. All these
objectsareplaced at LYR_STATUS and are static. They are created by the Autolnit object, just like
the clouds are.

68

One lagt object remains: the menu pointer on the title screen. Thisisan Autolnit object itself and itis
one of the few objects in this game that have an object state different from NoState. This object checks
the keys that are pressed, changesitsof f set value to move the visible pointer and ends the level (the
title screen) when a choice has been made.

9.4 Creating our main character

Now, we will define our main character, Charlie. We will have to create a much more complex object
than the ones we have created so far. At any time, Charlie can be walking, jumping, falling, swimming
or just be standing still. All these actions have their own types of movement and their own sprites.

9.4.1 Main character actions
We will start by defining al the actions.
MC_IDLE :== 1
MC_WALK : ==
MC_JUWP ==
MC_FALL :==

MCSWM ==
MC_DEAD : ==

[o2 ¢z BE S @) N

We will use the main character's object state to store the current action. In our event functions, we will
often have a case structure depending on this current action.

We define a sprite for each action using the bitmapsin Figure 9-6.

gﬁciﬁ G 6o G Gor

:p-__._:-l."i-.,_..-'.-"- I::.ji.i-:j:\rl.

Figure 9-6: Main character bitmaps

The first six bitmaps correspond with the defined actions. We use the last two to make our main
character open its mouth if the player does nothing for along time (to get the player's attention back to
the game). We define six sprites: CharlieldleSprite, CharlieWalkSprite, CharlieJumpSprite,
CharlieFall Sprite, CharlieSwimSprite and CharlieDeadSprite.

In the definition of our main character, the order of the sprites corresponds with the action constants
defined above, so we can use these constants with current spri t e aswell.

sprites = [Charlieldl eSprite, CharlieWal kSprite, CharlieJunpSprite,
CharlieFall Sprite, CharlieSwi nSprite, CharlieDeadSprite]

9.4.2 Object state

We use the object state to store information about the main character that we cannot store in the object
record. We have already seen thefirst element: the current action.

To determine the action at a certain point in the game, it's useful to have information about the previous
position of the main character. For example, if the current action is MC_WALK, but the current positionis
exactly equal to the previous position, we know that our character is not walking anymore, so we set
the action back to MC_I DLE. In the same way, we can find out that the character has reached the ground
after afall. However, remembering only one previous position is not enough. If our character makes a
jump, it will stop for one frame at the highest point before starting to fall again. We wouldn't want it to
becomeidle at that point. For this reason we will keep track of the two last positions of our main
character.

69

Charlie's health is also stored in the object state. At the beginning of alevel, there are three hearts.
Every time Charlieis hurt by an enemy, one of these hearts disappear. When no hearts are left, Charlie
loses alife.

During the game Charlie can jump on top of enemiesto destroy them. The player receives points for
destroying enemies. We will make the points double each time Charlie jumps from one enemy straight
to the next. For example, we get 100 points for the first, 200 for the next, then 400, 800, etc. However,
Charlie may not touch the ground in between. We will aso play a sound that becomes higher each
time. Thisis also something to store in the object state, the note to play next.

We can now define the object state:

Mai nChar St at e

= { action ©oInt

| ast speedl :: Real XY
| ast speed2 :: Real XY

: enenynote :: Int

, health ooInt

}

At the beginning of alevel, the main character's state looks like this:
initstate = { action = MC_IDLE

, lastspeedl = zero
, lastspeed2 = zero
, enenynote =0
, health =3
}

9.4.3 Initialization

Thei ni t function of the main character has some interesting differences from that of previous objects.
First of al, the main character controls the scrolling through the level:

(_, gs) = CreatejectFocus

{ scrollleft = 132, scrollup = 50
, scrollright = 132, scrolldown = 52
, maxxscrollspeed = 2, maxyscrollspeed = 3} gs

Since we use a screen of 320x240 pixelsin this game, our main character will have an area of 56x138
pixels at the center of the screen in which it can freely move, without causing the level to scroll.

Because the main character will be controlled by the player, opt i ons. checkkeyboard is set to True
and opt i ons. al | owkeyboar dr epeat to False (we only want to know when akey is pressed and
when it isreleased again).

The main character collides with just about al bound types that we have defined.
,mownbounds

bouncebounds
col | i debounds

BND_MAI N_CHARACTER

BND_STATI C_BOUNDS

BND_ENEMY + BND WATER + BND_ENDI NG +
BND_POWER UP + BND_BLOCKS + BND KI LL

1

1

9.4.4 Movement control

An important part of the movement is defined by values in the object record. The gravity is defined by:
acceleration = {rx = 0.0, ry = 1.0 / 8.0}. Thiswill make our main character
automatically fall down as soon as there is no solid ground beneath it. Whenever the character walks, it
isaways dowed down by: sl owdown = {fvx = Factor 1.0 / 16.0, fvy = Value 0.0}.
The maximum (horizontal) speed depends on whether Charlie is walking on the ground or swimming
in the water. So we change the value of maxspeed whenever Charlie falsinto the water or jumps out
of it.

70

The way we can control Charlie's movement is defined in the keydown and keyup event code. There
are three keys that we check: the « and - arrow keys and Space.

newkeydown (st=:{action}, or) key gs
| key == &K LEFT
newaction = if (action == MC IDLE) MC WALK acti on
= (({st & action = newaction},
{or & acceleration.rx = or.acceleration.rx - ac,
currentsprite = newaction}), gs)
| key == &K R GHT
newaction = if (action == MC_ IDLE) MC WALK acti on
= (({st & action = newaction},
{or & acceleration.rx = or.acceleration.rx + ac,
currentsprite = newaction}), gs)
| key == GK_SPACE
| (isMember action [MC_IDLE, MC_ WALK, MC SWM)
act = action
((st, or), gs) = (({st & action = MC_JUM},
{or & speed = (junpspeed or.speed)
, currentsprite = MC_JUW
, offset = normal of f set
, maxspeed = maxwal kspeed}), gs)
| (act == MC_SWM
(_,9s) = Splash {x = or.pos.x, y = or.pos.y + 32} gs
= ((st, or), gs)
= ((st, or), gs)
= ((st, or), gs)
| otherwise = ((st, or), gs)
wher e
junmpspeed sp=:{rx,ry} ={rx =rx, ry =ry - 4.35 - abs (rx) / 3.0}

newkeyup (st, or) key gs
| key == &K LEFT
= ((st, {or & acceleration.rx = or.acceleration.rx + ac}), gs)
| key == GK_RI GHT
= ((st, {or & acceleration.rx = or.acceleration.rx - ac}), gs)
| otherwise = ((st, or), gs)

What we actually do to make Charlie walk Ieft or right is change the value of accel er at i on. The
horizontal acceleration can only have three values. -ac, 0 and ac (ac is defined as 1.0/ 5.0), because
opti ons. al | owkeyboar dr epeat isFalse. Aslong aswe keep the left or right arrow key pressed,
theaccel er at i on vaue remainsthe same and Charlie'sspeed increases, until it reachesthe
maxspeed value. When we rel ease the key, the accel eration stops, and the main character will
gradually slow down because of the sl owdown value.

Jumping is done by setting the vertical speed to a negative value, caculated by j unpspeed. The
gravity will eventually make Charlie fall down again. Such a jump may only start from the ground, so
the current action must be MC_I DLE, MC_WALK or MC_SW M Jumping out of the water will cause a
splash.

The current action is mainly controlled by the ani mat i on event. By using sprites that have short
sequences and do not |oop, we make this event occur regularly. Using thisani mat i on event, we keep
checking if the current action should be changed into another action. For example, if the main character
isjumping, we will check if it has reached its highest point and has started to fall. When it isfalling, we
check if it has reached the ground and should be walking again. If it iswalking, we check if it is not
moving anymore and should be idle, and so on. Thisisall done by the animation event.

newani mation (st=:{action = act}, or=:{offset = ofs}) gs
xstuck = ((or.speed.rx == st.|astspeedl.rx) &&
(or.speed.rx == st.lastspeed2.rx) & ((tolnt or.speed.rx) == 0))
ystuck = ((or.speed.ry == st.|astspeedl.ry) &&

(or.speed.ry == st.lastspeed2.ry) && ((tolnt or.speed.ry) == 0))
ol dact = act

(act, ofs) = case act of
MC_ WALK -> if xstuck
((if (or.speed.ry > sp) MC_FALL MC IDLE), ofs)

71

((if (or.speed.ry > sp) MC FALL MC WALK), ofs)
MC JUW -> (if (or.speed.ry > sp) MC FALL
(i f (xstuck && ystuck) MC IDLE MC JUWMP), ofs)
MC_FALL -> (if (or.speed.ry > sp) MC FALL MC WALK, ofs)
MC_ SWM -> (MC_SWM
{ofs &y =if (ofs.y == 4) 3 (ofs.y + 1)})
ot herwi se -> (MC_IDLE, ofs)
st = {st & |astspeed2 = st.|astspeedl}
st = {st & |lastspeedl = or.speed}
= (({st & action = act},
{or & currentsprite = act, offset = ofs}), gs)

sp=1.0/ 4.0

The of f set isused to make Charlie go up and down all the time in the water.

9.4.5 Collisions

The main character'scol | i de function isvery large. It contains separate parts, which handle collisions
with the various kinds of objectsin thelevel. It has the following structure:

newcol lide (st, or) bnds othertype otherobjrec gs
| (othertype == OBJ_WATER)

| (_otuﬁertype == OBJ_PIN

[(:otuﬁertype == OBJ_BOUNCE_BLOCK)
| (=ot“t.1ertype == OBJ_ENDI NG

| (:of'ﬁertype == OBJ_HEART)

| bn(.j's..top /1 main character |ands on top of other object
| (not (otherobjrec.ownbounds bitand BND_BLOCKS == 0))

= ... // other object is a crate
| (not (otherobjrec. ownbounds bitand BND_ENEMY == 0))

= ... // other object is an eneny

= ((st, or), 9s)
| (not (otherobjrec.ownbounds bitand BND_ENEMY == 0))

= .. // main character is hurt by eneny
= ((st, or), gs)

We first check for all the specia objects by their object type and then handl e the rest together, looking
at their bound types. Because objects can have several bound types, we cannot simply compare these
bounds with BND_ENEMY or BND_BLOCK. Instead, we have to use the bi t and operator.

Collisonswith al the kinds of enemies are handled in the same way. The main character either lands
on top of the enemy, killing it, or touches the enemy from a side or from the bottom and gets hurt.

Note that the heart (0BJ_HEART) isthe only kind of power up item the main character collides with.
The others (coins, diamonds and lives) do collide with the main character and handle these collisions
by themselves. Information about the number of coins, diamonds and livesis kept in the game state,
because thisinformation hasto do with the entire game, not only one level. The number of hearts only
belongsto asinglelevel and is stored in the main character's object state.

If the main character gets hurt and doesn't have anymore hearts, it dies. We set the current action to
MC_DEAD and let it Slowly fall off the screen. We also create two events, using the function

COr eat eUser GaneEvent . Thefirst, EV_STOP_MOVI NGisto make the dead main character stop faling
before being forgotten by the game engine. The second, EV_QUI T_LEVEL isto quit the level. If there
are no lives|eft, there will aso be athird event: EV_GAME_OVER, which will cause the update the game
State.

There isone more user event: EV_STOP_BLI NKI NG. Thisis set when the main character gets hurt but
does have at least one heart. After a such a collision, we give the player some time to get out of the

72

harmful situation and make the main character blink for awhile. During thistime, it will not be hurt by
other objects. We use the EV_STOP_BLI NKI NG event to know when to stop this blinking.

As mentioned before, we play a sound that becomes higher every time the main character jumps from
one enemy to another. We do this by playing the sound at a higher frequency each time. We use the
get not ef r eq function to calculate the frequency of the note we want.

(_, gs) = PlaySoundSanple SND H T H ghVol ume PAN_CENTER
(getnotefreq (MDDLE C + 76 + 2 * st.enenynote)) 0 gs
st = {st & enenynote = st.enenynote + 1}

9.5 Finishing the game

After defining our main character, our level has finally become playable. To make our first level
complete, we will create the statistics, which are shown at the status line. After that, we will define the
flow of the game and finally, we can start creating the other levels and finish the game.

We also create atitle screen, which isjust like a (very small) level. Thislevel hastwo objects: the
menu pointer object and the main character (but without itskeydown and keyup functions). We use
statistics for the text on the title screen.

CHARLIE THE DUCK

TanE Clzun Surng kg
LT T ST H e

S (71 1 O S
Figure 9-7: Thetitle screen

9.5.1 Adding statistics

In Figure 9-5, we have seen the status line. From left to right it shows the number of lives, diamonds,
coins, hearts and the player's score. Most of thisinformation comes from the game state, except the
player's health. Thisis shown entirely with objects, as discussed earlier.

Wewill first look at the game state:

GaneSt at e

= { curlevel oo Int
, maxl evel oo Int
, titlescreen :: Bool
, statusline :: Bool
, exitcode ooInt
, lives oo Int
, coins oo Int
, di anonds oo Int
, score oo Int
, quit ;. Bool
, ganeover ;. Bool
}

Because the statistics function belongs to the entire game and not to asingle level, we will use

st at usl i ne to indicate whether or not the status line should be shown. The title screen does not have
astatus line, but the normal levels do. We will do the same for the "GAME OVER" text. This should
only be displayed when ganmeover isset to True. Inthe sameway, ti t | escr een indicates when text
should be written for the title screen.

73

Theresult of the St ati sti cs function dependson thevaluesof titl escreen, st atusline and
ganmeover :

Statistics :: GaneState -> ([Statistic], GaneState)
Statistics gst

| gst.titlescreen

= ([TitleTextShadow, TitleText
, DenoText

Copyri ght
MenuText O "Start"
MenuText 1 "Exit"

1, gst)

| gst.statusline
= ([Lives gst.lives

, Dianonds gst. di anonds

, Coins gst.coins

, Score gst.score

] ++ (if gst.ganmeover [GanmeOver] []), gst)
= ([1. ost)

The lives, diamonds, coins and score in the status line are al defined separately asi nt -
St ati stic functions, for example:

Score :: Int -> Statistic
Score n
={ fornmat = "Score 9%®©7d"

, val ue = Just n
, position = {x = ~10, y = 5}
, style = StatStyle
, color = Wite
, shadow = Just St at Shadow
, alignment = zero
}

9.5.2 Flow of the game

Every level setsan exit code (exi t code in the game state), indicating that the player has managed to
complete the level, or that the player was killed, or that the player has simply quit the level. The
exi t code can have the following values: EC_NONE, EC_QUI T, EC_SUCCESS and EC_FAI LURE.

Any object can change the exitcode, using the following function:

set exi tcode newcode gs = appGSt (setgstexitcode newcode) gs
wher e
setgstexitcode :: Int GanmeState - GanmeState
setgstexitcode ¢ gst = {gst & exitcode = c}

In theinitial game state, exitcode is set to EC_NONE. The Autolnit object setsit to EC_QUI T as soon as
alevel starts. If our main character looses alife and has to restart the current level, we set exi t code to
EC_FAI LED and if our character does reach the end of the level, we set it to EC_SUCCESS.

We define the flow of our game by writing anext | evel function, whichis part of the game
definition. In our case, this function will look at exi t code to determine what the next level is.

Next Level Function :: GaneState - (Int, GanmeState)

Next Level Function gst =: {curlevel, naxlevel, titlescreen,
exitcode, |ives, gameover}
| exitcode == EC QUIT
= (0, gst)

| titlescreen
= (next, {gst & titlescreen = Fal se
statusline = True
lives = DEFAULT_LI VES
, curlevel = next})
| exitcode == EC_FAl LURE
| lives >0

74

= (curlevel, {gst &lives = lives - 1})

=title

| exitcode == EC_SUCCESS
= next | evel

=title

wher e
title = (1, {gst & titlescreen = True
, statusline = Fal se
, ganeover = Fal se
curlevel = 1})

nextlevel = if (curlevel + 1 > maxlevel)
title (next, {gst & curlevel = next})

next = curlevel + 1

75

Chapter 10
Conclusion

After implementing the complete game library, we can now ook at the results. In the previous chapter,
we have already seen that it is possible to create a compl ete platform game using a Clean specification.
But can we create games faster or more easily using thislibrary? Could we use the library for other
types of games (other than platform games)? I's the performance of the games we create sufficient to
make them playable?

10.1 Rapid Game Development

It took two and a half weeks to create the platform game Charlie the Duck (described in Chapter 9)
using the new library (about 1,950 lines of code). Writing the original version in Pascal (35,000 lines)
took more than six monthsin 1996. But making such a comparison is actually not fair. The Pascal
version includes all the low-level code and was made without using any kind of level editor. Besides, it
isacomplete game with twelve levels, not just atwo-level demo. However, this example should give
an idea of how easy it isto use the Clean library together with the tools. To make a good comparison
between Clean and another language, we would have to implement avery similar library for this other
language (also using the same tools) and then write exactly the same game in both languages.

Using the level editor makes designing the layers and positioning the objects very easy. However,
because levels are converted to Clean code, the game must be recompiled every time we change a
level. Compiling agame in Clean takes along time.

10.2 Possibilities

The library was designed for platform games, but also turns out to be very suitable for actually any type
of two-dimensional games. The game Worms (see Figure 10-1) shows an example of anon-platform
game created with the library. Here, the game has only one layer, which cannot scroll and thereisno
gravity.

Figure 10-1: Worms
In the same way, we could for example make a racing game (viewed from the top) or a game such as
Pac-Man. Two-player games can also be made, such as afighting game.

The library is probably also suitable for most board games, but since there is no mouse pointer, these
may be alittle difficult to control.

The game library is not designed for 3D games, because these require a complete different set of
functions. However, it is of course possible to create drawings of 3D movement and insert thesein a
game. We could render arotating cube and create an animation sequence that displays this cube.

76

In the current version of thelibrary, it is not possible to use I/O functions while alevel isrunning,
because the iostate is not available throughout the library. However, we can make games with high
scores etc., by doing file access before and after the actual game runs. This problem can probably be
solved in future versions, making it possible for any game object to perform 1/0 functions.

10.3 Performance

The performance of the game library is acceptable on most PC's, however there are still problems with
certain configurations, on which the games are really slow. This can probably be solved though,
because other (similar) demos using the same DirectX functions do run fast on these PC's.

If we make another (unfair) comparison between both versions of Charlie the Duck and look at the
system requirements, we see great differences. The origina version requires only a 486 computer at 66
MHz to run at full speed. The new version requires a computer with a Pentium processor and afast
video card to run properly. This differenceis caused in the first place by the use of DirectX, but aso
has to do with the countless optimizations in the original version.

The code that is produced using a universal library is generally not optima for a particular game. The
produced executables are also very large in comparison with similar games written in other languages.
The interpreter function can run any platform game, but will not look for the most efficient way to do
this. For example, the Worms game (see 810.2) has about the same system requirements as Charlie the
Duck, even though it doesn't scrall, and there is only one layer with a small worm walking around. We
could easily write a much more efficient version of this game.

However, the system requirements of the games produced using the library are not any higher than
those of most games written today.

To measure whether the introduction of skipmove (see 85.6.4.12) has turned out to be useful for
performance optimization, we can create a simple demo of asmall level with random bouncing balls
(see Figure 10-2) in two versions. In thefirst version, the ball object has an object state containing the
current speed and all movement is handled by the ball's move event. In the second version, skipmove is
set to -1, so the move event never occurs and the game engine handles the movement entirely. We can
then run the demo with a number of balls and scroll through the level. We are interested in the
maximum number of balls with which the demo can scroll smoothly without jerking at all.

Figure 10-2: Speed test

Thefirst version (move event controls objects) runs at full speed (100 frames per second) with up to 28
balls®. If we add more balls, the scrolling isn't smooth anymore. The second version (without the move
event) scrolls completely smoothly with up to 195 balls. From this example, we can conclude that
using the move event should be avoided whenever possible to improve performance. The delay in the
first version is probably mainly caused by the cross-call overhead (switching between threads).

10.4 Overall conclusion

Using Clean together with the game library provides a new way to actually design games instead of
really program them. Using the library together with some tools, we can create high quality platform

3 Tested on aPentium 11-300 MHz

77

gamesin only afraction of the time needed to program them from scratch. The library isaso very
useful for most kinds of (two-dimensional) games, not only for platform games.

The produced games are generaly larger in size and less efficient than they would beif the game had
been written from scratch, but the system reguirements are not higher than those of most new games.
There are still some performance problems on some PC configurations which make the games very
slow, but this can probably be solved.

By avoiding continuous switching between the game engine, written in C and functionsin the Clean
specification, the performance can be improved.

Distributing final gamesis till alittle awkward, because Clean does not support resourcesin the
executables. All files needed for the game (bitmaps, sound samples and music files) have to be copied
along with the game to make it work. The player can also look at (or listen to) these files without
playing the game.

Porting the library to other platforms should not be too difficult. This might eventually result in an
opportunity to create games that run on several platforms.

78

Refer ences

(1]

(2]

(3]

[4]

(5]

6]

(7]
(8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

Plasmeijer, M.J. and van Eekelen, M.C.J.D. Functional Programming and Parallel Graph
Rewriting. Addison-Wesl ey Publishing Company, 1993.

Achten, P.M. and Wierich, M. A Tutorial to the Clean Object 1/O Library - version 1.1.
Internal Report, Department of Functional Programming, University of Nijmegen, The
Netherlands, 1999 (ftp://ftp.cs.kun.nl/pub/Clean/supported/Objectl O/doc/tutorial.11.ps.gz).

Gruber, D. Action Arcade Adventure Set. Coriolis Group Books, 1994
(http://www.fastgraph.com/aaas.html).

Gruber, D. Modeling Sprite Animation Using Finite Sate Automata, published as. "Automata
Animation", PC Techniques, Val. 6, No. 1, 1995.

Game Creation Programs for Non-Programmers:
http://www.mindspring.com/~ambrosine/resource.html.

Recreational Software Designs, Game Maker, Review by Power Unlimited, VNU Electronic
Leisure Publishing, March 1994

Europress, Klik & Play: http://www.europress.co.uk/products/kp.html.

Creative Tools For A Creative Age: Click & Create and The Games Factory:
http://clickteam.con.

DJGPP, a complete 32-bit C/C++ development system for Intel 80386 (and higher) PCs
running DOS: http://www.delorie.com/djgpp/.

Allegro, A Game Programming Library: http://www.talula.demon.co.uk/allegro/.

The Fastgraph Home Page: http://www.fastgraph.com/.

The Microsoft® DirectX® Web site: http://www.microsoft.com/directx/.

The MSDN Library: http://msdn.microsoft.com/library/.

Loirak Developement Group. DirectX Game Programming: http://loirak.com/prog/directx/.

Joffe, D. Game Programming with DirectX, 1998:
http://www.geocities.com/SoHo/L ofts/2018/djdirectxtut.html.

Gruber, D. Color Reduction for Windows Games, Visua Developer, Vol. 7, No. 1, 1996.

Hori, H. DelphiX source code and documentation: http://www.ingjapan.ne.jp/hori/.

79

